NGS Banner
Contributors

Nikaoly Ciriaco1, Esther Zamora3, Santiago Escrivá3, Rosa Somoza1, Javier Hernández-Losa1, Santiago Ramón y Cajal1, Martín Espinosa-Bravo2, Kaja Wieghardt4, Hillary Sloane4, Anna Starus4, Frank Holtrup4, Johannes Fredebohm4, Daniel L. Edelstein4, Lucy Georgieva5, Graham Speight5, Frederick S. Jones4, and Vicente Peg1

1Pathology Department, Hospital Universitario Vall d’Hebron, Barcelona, Spain; 2Breast Surgical Oncology Department, Hospital Universitario Vall d’Hebron, Barcelona, Spain; 3Oncology Department, Hospital Universitario Vall d’Hebron, Barcelona, Spain, 4Sysmex Inostics, Baltimore , USA, 5Oxford Gene Technology, Oxford, UK

 

Background

Neoadjuvant treatment (NAT) is being used widely to eliminate tumor burden in breast cancer (BC) patients; the primary goal of such treatments is to reduce the cancer prior to surgery. Although the standard of care is to perform surgery of primary BC after NAT, it is well known that for certain patients achieving clinical complete response (cCR) and pathological complete response (pCR), surgery following such treatment may be unnecessary.

Neoadjuvant treatmentPrevious studies have shown that levels of circulating tumor DNA (ctDNA) during therapy and post-surgery can stratify patients that exhibit effective responses vs. those showing minimal residual disease. In this study, we performed longitudinal tracking of plasma TP53 and PIK3CA mutations pre-specified from NGS analysis of tumor tissue specimens from HER2-positive (HER2) and triple negative (TN) BC patients. The primary objective of this study was to assess ctDNA clearance during NAT as a correlate to effective response to treatment, as benchmarked by clinical complete response (cCR) and pathological complete response (pCR). To accomplish this, a prospective study was conducted to identify patient-specific PIK3CA and TP53 mutations in tissue using SureSeq NGS technology, which could then be used to track the presence/absence of mutations prior to, during, and following NAT using Sysmex SafeSEQ technology.

Register with us to read the full article

Once you have registered with us for free you will be able to read all our supportive literature, video tutorials and webinars.

  • Share
You might also be interested in

Simultaneous detection of genetic and copy-number variations in BRCA1/2 genes

  • Resource type: Scientific poster
  • Application: Solid tumour
Read

Digesting the indigestible - Rescuing FISH on FFPE

  • Resource type: Customer interview
  • Application: Solid tumour
Read
CTA Icon

Stay up-to-date with the latest news from OGT, including new products, support resources, and our DNA Dispatch newsletter