

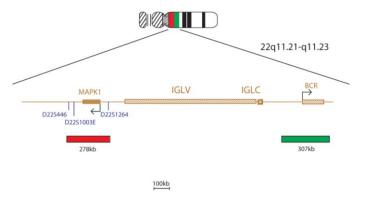
Instruções de Utilização REF: LPS 039-S/LPS 039

IGL Breakapart Probe

APENAS PARA USO PROFISSIONAL

PORTUGUÊS

Mais informações disponíveis em www.ogt.com


A hibridização in situ por fluorescência (FISH) é uma técnica que permite detetar sequências de ADN em cromossomas metafásicos ou em núcleos interfásicos de amostras citogenéticas fixadas. A técnica recorre a sondas de ADN que se hibridizam com cromossomas inteiros ou sequências únicas individuais e serve de forte adjuvante à citogenética clássica. Desenvolvimentos recentes fizeram com que esta valiosa técnica possa agora ser aplicada também à avaliação de biopsias de tumores sólidos, o que pode fornecer informações importantes para a previsão da progressão do tumor. As metodologias atuais, nomeadamente a imuno-histoquímica ou a "Southern blotting", podem fornecer informações ao nível da expressão genética. Quando é realizada em secções de tecido (quer incluído em crióstato ou parafina), a FISH pode fornecer informações ao nível do gene, in situ, no local exato dentro do tumor. Isto pode revelar a heterogeneidade entre células e permitir a deteção de pequenos clones de células geneticamente distintas.

Informações sobre a sonda

As translocações que envolvem os loci de imunoglobulina são eventos recorrentes em vários subtipos de linfomas de células B. Além das translocações que envolvem o locus IGH; têm sido descritas translocações variantes em 5-10% das neoplasias de células B que envolvem o locus kappa da cadeia leve da imunoglobulina (IGK) no 2p11.2 ou o locus lambda da cadeia leve da imunoglobulina (IGL) no 22q11^{1,2}. As translocações mais conhecidas que envolvem os loci da cadeia leve da IG são as translocações de Burkitt variantes t(2;8)(p12;q24) e t(8;22)(q24;q11) presentes em até 21% de todos os linfomas de Burkitt³. Outras translocações envolvem o oncogene BCL6, t(2;3)(p12;q27) e t(3;22)(q27;q11) e o locus BCL2, t(2;18)(p12;q21) e t(18;22)(q21;q11)^{4.5}. As translocações que envolvem os loci de cadeia ligeira da IG levam geralmente à rutura na região de junção do respetivo locus². O IGL consiste em 38 segmentos de gene de variável potencialmente ativa (IGLV), 35 pseudogenes e sete segmentos de gene constante do IGL, cada um com um segmento (J) de junção IGL (J-C)1.

Especificação da sonda

IGL, 22q11.21-q11.23, Vermelho IGL, 22q11.21-q11.23, Verde

O produto de IGL consiste numa sonda de 278 kb, marcada a vermelho, localizada de forma centromérica em relação à região Variável do IGL e abrangendo o gene MAPK1 e numa sonda verde, abrangendo uma região de 307 kb telomérica ao segmento Constante do IGL, incluindo o gene BCR.

Materiais Fornecidos

Sonda: 50 µl por tubo (5 testes) ou 100 µl por tubo (10 testes) Quantidade de sonda vermelha de IGL: 120-150 ng/teste

Quantidade de sonda verde de IGL: 120-150 ng/teste

As sondas são fornecidas pré-misturadas em solução de hibridização (formamida; sulfato de dextrano; SSC) e estão prontas para uso.

Contracorante: 150 µl por frasco (15 testes)

O contracorante é o DAPI Antifade (ES: 0,125 µg/ml DAPI [4,6-diamidino-2-

Advertências e Precauções

- Para utilização em diagnóstico in vitro. Apenas para uso profissional.
- Use luvas quando manusear sondas de ADN e o contracorante DAPI. As soluções de sonda contêm formamida, que é um teratógeno. Não inale vapores provenientes das mesmas nem permita o contacto com a pele. Use luvas, uma bata de laboratório e manuseie num exaustor de laboratório. Para a respetiva eliminação, lave com um grande volume de água
- O DAPI é um potencial agente cancerígeno. Manuseie com cuidado. Use luvas e uma bata de laboratório. Para a respetiva eliminação, lave com um grande volume de água.
- Todos os materiais perigosos devem ser eliminados de acordo com as diretrizes da sua instituição relativamente à eliminação de resíduos perigosos.

Conservação e Manuseamento

O kit deve ser conservado num congelador a uma temperatura entre -25 °C e -15 °C, até ao prazo de validade indicado no rótulo do kit. Os frascos de sonda e de contracorante têm de ser conservados num local escuro.

Equipamento necessário, mas não fornecido

- Placa quente (com uma placa sólida e controlo exato da temperatura até 1.
- Micropipetas e pontas de volume variável, entre 1 µl e 200 µl.
- Banho-maria com controlo exato da temperatura de 72 °C.
- Tubos de microcentrifugação (0,5 ml).
- Microscópio de fluorescência (ver secção "Recomendação de Microscópio 5. de Fluorescência").
- Jarras de Coplin em plástico ou vidro. 6.
- Pinça.
- 8. Óleo de imersão de lentes para microscópio de fluorescência.
- Centrifugadora de bancada.
- 10 Lâminas de microscópio.
- Lamelas de 24 x 24 mm. 11
- Temporizador. 12.
- Incubadora a 37 °C. 13.
- Cola de solução de borracha.
- Kit de pré-tratamento de tecidos (LPS 100).

Recomendação de Microscópio de Fluorescência

Para obter a melhor visualização possível da sonda, recomendamos uma lâmpada de mercúrio de 100 watts e lentes planas apocromáticas 63x ou 100x. O filtro passa-banda triplo DAPI/FITC/Texas Red é ideal para visualizar todas as substâncias fluorescentes e DAPI simultaneamente. Alternativamente, para a visualização de substâncias fluorescentes vermelhas e verdes, utilize o filtro passa-banda duplo FITC/Texas Red.

Preparação das Amostras

Este kit foi concebido para utilização em:

- Secções de tecido fixado em formalina e incluído em parafina (FFPE) ou microarrays de tecido (TMA); devem ser utilizadas secções de tecido com uma espessura de 4 µm-6 µm.
- Amostras de sangue periférico ou culturas de células da medula óssea fixadas no fixador de Carnoy e secas ao ar em lâminas de microscópio de acordo com procedimentos citogenéticos padrão.

Todas as amostras devem ser preparadas de acordo com as diretrizes do laboratório ou da instituição.

Protocolo do FISH

(Nota: Certifique-se de que a exposição da sonda às luzes do laboratório está sempre limitada)

Procedimento de FFPE

Pré-tratamento das amostras de tecido

O pré-tratamento das amostras de tecido deve ser feito de acordo com as diretrizes do laboratório ou da instituição em causa. Para obter os melhores resultados, utilize o kit de pré-tratamento de tecidos (LPS 100).

Pré-desnaturação

- Retire a sonda do congelador e deixe-a aquecer até à temperatura ambiente (TA)
- 2 Certifique-se de que a solução da sonda é uniformemente misturada com uma pipeta.
- 3. Retire 10 µl-15 µl (consoante o tamanho do tecido) de sonda por cada teste e transfira-os para um tubo de microcentrifugação. Reponha o restante volume da sonda no congelador.
- 4. Coloque a sonda e a lâmina da amostra numa placa quente a 37 °C (+/-1 °C) durante 5 minutos para pré-aquecimento.
- Coloque 10 μ l-15 μ l da solução de sonda na amostra e aplique uma lamela com cuidado. Vede com cola de solução de borracha e deixe a cola secar completamente.

Desnaturação

Desnature a amostra e a sonda em simultâneo aquecendo a lâmina numa placa quente a 75 °C (+/-1 °C) durante 5 minutos.

Hibridização

Coloque a lâmina num recipiente húmido resistente à luz a 37 °C (+/-1 °C) durante toda a noite.

Lavagens pós-hibridização

- Retire a lamela e todos os vestígios de cola com cuidado. Mergulhe a lâmina em SSC 0,4x (pH 7,0) a 72 °C (+/-1 °C) durante 9. 2 minutos sem agitar.
- Drene a lâmina e mergulhe-a em SSC 2x e 0,05% de Tween-20 à TA (pH 7,0) durante 30 segundos sem agitar.
- Drene a lâmina e aplique 10 µl-15 µl de DAPI Antifade em cada amostra.
- Cubra a amostra com uma lamela, elimine eventuais bolhas e deixe a cor desenvolver-se no escuro durante 10 minutos. 12.
- 13 Visualize com um microscópio de fluorescência.

Procedimento de Sangue Periférico ou Culturas de Medula Óssea Preparação das lâminas

- Coloque uma gota de amostra celular numa lâmina de microscópio de vidro. Deixe secar.
- Mergulhe a lâmina em SSC 2x durante 2 minutos à temperatura ambiente (TA) sem agitar.
- Desidrate numa série de etanol (70%, 85% e 100%), cada uma durante 2 minutos à TA.
- Deixe secar.

Pré-desnaturação

- Retire a sonda do congelador e deixe-a aquecer até à TA.
- Certifique-se de que a solução da sonda é uniformemente misturada com uma pipeta.
- Retire 10 µl de sonda por cada teste e transfira para um tubo de microcentrifugação. Reponha o restante volume da sonda no congelador.
- Coloque a sonda e a lâmina da amostra numa placa quente a 37 °C (+/-°C) durante 5 minutos para pré-aquecimento.
- Coloque 10 µl da solução de sonda na amostra de células e aplique uma lamela com cuidado. Vede com cola de solução de borracha e deixe a cola secar completamente.

Desnaturação

10. Desnature a amostra e a sonda em simultâneo aquecendo a lâmina numa placa quente a 75 °C (+/-1 °C) durante 2 minutos.

Hibridização

11. Coloque a lâmina num recipiente húmido resistente à luz a 37 °C (+/-1 °C) durante toda a noite.

Lavagens pós-hibridização

- Retire a lamela e todos os vestígios de cola com cuidado.
- Mergulhe a lâmina em SSC 0,4x (pH 7,0) a 72 °C (+/-1 °C) durante 2 minutos sem agitar.
- Drene a lâmina e mergulhe-a em SSC 2x e 0,05% de Tween-20 à TA (pH 7,0) durante 30 segundos sem agitar.
 Drene a lâmina e aplique 10 µl–15 µl de DAPI Antifade em cada amostra.
- 15
- Cubra a amostra com uma lamela, elimine eventuais bolhas e deixe a cor 16. desenvolver-se no escuro durante 10 minutos.
- Visualize com um microscópio de fluorescência.

Comentários

A eficiência da hibridização e a morfologia dos tecidos estão geralmente correlacionadas negativamente. Os procedimentos de pré-tratamento agressivos que melhoram a eficiência da hibridização (por exemplo, um tempo prolongado de digestão enzimática) tendem a destruir a estrutura das células e a morfologia dos tecidos. No entanto, o pré-tratamento suave poupando as estruturas de tecido pode não ser suficiente para a penetração da sonda e para obter resultados de FISH bem-sucedidos.

A duração ideal do pré-tratamento térmico e do tempo de digestão enzimática dependerá da idade do bloco, da composição do tecido e da qualidade da fixação do tecido. A digestão enzimática deve ser reduzida para biopsias de agulha grossa e quaisquer secções que contenham poucas células tumorais ou que tenham grandes áreas de necrose. Estas amostras têm de ser manuseadas com especial cuidado para evitar uma digestão excessiva.

Estabilidade das lâminas acabadas

As lâminas de FISH permanecem analisáveis durante um período máximo de 1 mês se conservadas no escuro a uma temperatura inferior a 4 °C.

Recomendações para o Procedimento

- Não é recomendado o aquecimento ou envelhecimento de lâminas que contém amostras de sangue periférico ou medula óssea, uma vez que tal pode reduzir a fluorescência do sinal.
- As condições de hibridização podem ser negativamente afetadas pela utilização de reagentes que não sejam os fornecidos ou recomendados pela Cytocell I td
- Recomenda-se vivamente a utilização de um termómetro calibrado para medir as temperaturas das soluções, banhos-maria e incubadoras, visto que estas temperaturas são críticas para o desempenho ideal do produto.
- As concentrações de lavagem, o pH e as temperaturas são importantes, visto que condições pouco rigorosas podem resultar numa ligação não específica da sonda e condições demasiado rigorosas podem resultar na ausência de sinal
- Uma desnaturação incompleta pode resultar em ausência de sinal e uma desnaturação excessiva também pode resultar numa ligação não específica.

Resultados Esperados

Numa célula normal, espera-se dois sinais vermelhos/verdes (ou amarelos fundidos) (2Y). Numa célula com translocação do IGL, deve haver um sinal vermelho distinto e um sinal verde, além de um sinal vermelho/verde (ou amarelo fundido) do cromossoma 22 normal (1R, 1G, 1Y).

Limitações

A comunicação e interpretação dos resultados da FISH devem ser consistentes com as normas da prática profissional e devem tomar em consideração outras informações clínicas e de diagnóstico. Este kit destina-se a ser utilizado como adjuvante de outros testes de diagnóstico laboratoriais e não deve ser iniciada qualquer medida terapêutica apenas com base nos resultados da FISH.

Informações Adicionais

Para obter mais informações sobre o produto, contacte o departamento de assistência técnica da CytoCell.

T: +44 (0)1223 294048

E: techsupport@cytocell.com

W: www.ogt.com

Bibliografia

- Poulseu TS et al., Leukemia 2002;16:2148-55
- 2. Martin-Subero JI et al., Int J Cancer 2002;98:470-4
- 3. Kornblau SM et al., Hematol Oncol 1991;9:63-78
- Chaganti SR et al., Genes Chromosomes Cancer 1998;23:323-7 Tashiro S et al., Oncogene 1992;7:573-7

REF	PT: Número de catálogo
IVD	PT: Dispositivo de diagnóstico in vitro
LOT	PT: Código de lote
Ţį	PT: Consulte as Instruções de utilização
***	PT: Fabricante
	PT: Prazo de validade
1	PT: Limites de temperatura
Σ	PT: Suficiente para <n> testes</n>
CONT	PT: Conteúdo

Patentes e Marcas Comerciais

CytoCell é uma marca registada da Cytocell Ltd.

Este produto contém tecnologia licenciada pela Life Technologies Corporation e está disponível apenas para uso em diagnósticos humanos ou para fins de investigação na área das ciências da vida.

Cytocell Ltd.

Oxford Gene Technology, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK T: +44(0)1223 294048 F: +44(0)1223 294986 E: probes@cytocell.com W: www.ogt.com