



Instrucciones de uso

REF: LPH 027-S / LPH 027

# AML1 (RUNX1) Breakapart Probe





**SOLO PARA USO PROFESIONAL** 



Más información y otros idiomas disponibles en www.ogt.com

### Limitaciones

Este producto está diseñado para detectar reordenamientos mediante valores críticos en la región fijada con los clones rojo y verde de este conjunto de sonda, en la que se incluye la región *AML1* (*RUNX1*). Es posible que con este producto no se detecten valores críticos fuera de esta región ni variantes de los reordenamientos contenidas en su totalidad dentro de la misma.

Es posible que los usuarios observen patrones de señales variables en algunos reordenamientos en la leucemia linfoblástica aguda (LLA) debido a la región de valor crítico difusa.

El ensayo no está previsto para su uso como técnica diagnóstica, prueba prenatal, método de cribado poblacional, análisis de diagnóstico inmediato o prueba de autodiagnóstico independiente. Este producto está previsto exclusivamente a un uso clínico profesional y todos los resultados deben ser interpretados por personal debidamente cualificado teniendo en cuenta los resultados de otros ensayos pertinentes.

Este producto no ha sido validado para su uso en tipos de muestras o de enfermedades distintas de las especificadas en su uso previsto.

La notificación y la interpretación de los resultados de ensayos de hibridación in situ fluorescente (FISH, por sus siglas en inglés) deben llevarse a cabo de conformidad con las normas de práctica profesional y tener en cuenta otros datos clínicos y de diagnóstico. Este kit está previsto como complemento de otras pruebas analíticas diagnósticas, por lo que no se debe iniciar ninguna acción terapéutica basada exclusivamente en el resultado de un ensayo de FISH.

Si no se sigue el protocolo, el resultado se podría ver afectado y se podrían generar falsos positivos o falsos negativos.

Este kit no ha sido validado para ningún fin que no esté cubierto en el uso previsto declarado.

### Uso previsto

CytoCell AML1 (RUNX1) Breakapart Probe es un ensayo cualitativo no automatizado de hibridación *in situ* fluorescente (FISH, por sus siglas en inglés) que permite detectar reordenamientos cromosómicos en la región 21q22.1 del cromosoma 21 en suspensiones de células de origen hematológico fijadas en solución fijadora de Carnoy (3:1 metanol/ácido acético) de pacientes con sospecha o diagnóstico confirmado de leucemia mielógena aguda (LMA) o leucemia linfocítica aguda (LLA).

# Indicaciones

Este producto está previsto como complemento de otras pruebas clínicas e histopatológicas en protocolos diagnósticos clínicos reconocidos en los que el conocimiento del estado de reordenamiento del gen *AML1* (*RUNX1*) resultaría relevante para el tratamiento clínico.

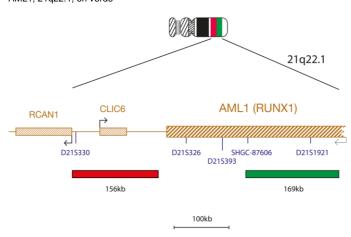
### Principios del ensayo

La hibridación in situ fluorescente (FISH) es una técnica que permite detectar secuencias de ADN sobre cromosomas metafásicos o en núcleos interfásicos de muestras citogenéticas fijadas. En la técnica, que constituye un excelente complemento de los análisis citogenéticos por bandeo cromosómico de Giemsa, se emplean sondas de ADN que hibridan con cromosomas completos o secuencias únicas simples. Esta técnica ahora puede aplicarse como una herramienta de investigación esencial en el análisis cromosómico prenatal de tumores sólidos y hematológicos. Una vez fijado y desnaturalizado, el ADN de interés está preparado para hibridar con una sonda de ADN marcada con

fluorescencia e igualmente desnaturalizada que contiene una secuencia complementaria. Tras la hibridación, se retira la sonda de ADN libre o sin unión específica y el ADN se contratiñe para su visualización. A continuación, se puede observar mediante microscopía de fluorescencia la sonda hibridada sobre el material de interés.

### Información sobre las sondas

El gen RUNX1 (factor de transcripción 1 de la familia RUNX), ubicado en 21q22.1, es una de las dianas más frecuentes de los reordenamientos cromosómicos observados en la leucemia aguda humana.


Los reordenamientos más comunes son las fusiones ETV6-RUNX1 y RUNX1-RUNX1T1. La fusión ETV6-RUNX1 se produce a partir de la translocación t(12;21)(p13;q22), que se observa en alrededor del 21 % de los casos de LLA infantil de linfocitos B¹, mientras que la fusión RUNX1- RUNX1T1 es el resultado de la translocación t(8;21)(q22;q22), registrada en el 10-22 % de los pacientes con LMA de subtipo FAB (clasificación franco-anglo-estadounidense) M2 y en el 5-10 % de todos los casos de LMA<sup>2,3</sup>. Estos dos reordenamientos se consideran indicadores de pronóstico favorable en estas enfermedades<sup>4,5</sup>.

El gen RUNX1 también aparece reordenado en muchas otras translocaciones menos frecuentes acompañado de los cromosomas 1, 2, 3, 4, 5, 6, 7, 9, 10, 14, 15, 16, 17, 18, 19, 20 y X, entre otros<sup>6</sup>. Esta sonda de rotura se ha diseñado para permitir la detección de los reordenamientos con este gen sin importar el gen que lo acompañe.

Los reordenamientos con el gen RUNX1 no se limitan a las translocaciones. Usando la técnica FISH, se han hallado amplificaciones del cromosoma 21 (iAMP21), en las que se incluye el gen RUNX1, en LLA infantiles<sup>7,8</sup>. Dichas amplificaciones se han relacionado con una evolución menos favorable<sup>9</sup>.

### Características de las sondas

AML1, 21q22.1, en rojo AML1, 21q22.1, en verde



El conjunto de sondas AML1 se compone de una sonda de 156 kb, marcada en rojo y centromérica al gen AML1 (RUNX1), que abarca el gen CLIC6 y de una sonda de 169 kb, marcada en verde, que cubre una porción del gen AML1 (RUNX1) en la que se incluyen los marcadores SHGC-87606 y D21S1921.

### Materiales suministrados

**Sonda**: 50  $\mu$ l por vial (5 ensayos) o 100  $\mu$ l por vial (10 ensayos)

Las sondas se suministran premezcladas en disolución de hibridación (formamida; sulfato de dextrano; citrato de sodio salino [SSC]) y vienen listas para su uso.

# Tinción de contraste: 150 µl por vial (15 ensayos)

Se utiliza DAPI AntiFade como tinción de contraste (ES: 0,125  $\mu g/ml$  de DAPI [4,6-diamidino-2-fenilindol]).

### Advertencias y precauciones

- 1. Para uso diagnóstico in vitro. Solo para uso profesional.
- Use guantes al manipular las sondas de ADN y la tinción de contraste con DAPI.
- Las mezclas de las sondas contienen formamida, que es un teratógeno; no respire los vapores ni permita que entre en contacto con la piel. Manipúlelo con cuidado; utilice guantes y bata de laboratorio.
- El DAPI puede ser carcinógeno. Manipúlelo con cuidado; utilice guantes y bata de laboratorio.
- Deseche todos los materiales peligrosos de acuerdo con las directrices de eliminación de residuos peligrosos de su centro.
- 6. Todos los operarios deberán poder distinguir los colores rojo, azul y verde.
- Si no se siguen el protocolo y los reactivos indicados, el resultado se podría ver afectado y se podrían generar falsos positivos o falsos negativos.
- La sonda no se deberá diluir ni mezclar con otras sondas.
- Si no se usan 10 µl de sonda durante la fase del protocolo previa a la desnaturalización, el resultado se podría ver afectado y se podrían generar falsos positivos o falsos negativos.

### Conservación y manipulación



El kit debe conservarse en el congelador a una temperatura de entre -25 °C y -15 °C hasta la fecha de caducidad indicada en la etiqueta del kit. Los viales de las sondas y de la tinción de contraste se deben conservar en la oscuridad.



La sonda conserva su estabilidad durante los ciclos de congelación y descongelación que se experimentan durante el uso normal (la extracción de la sonda del congelador constituiría el primer ciclo y su reposición en el congelador, el segundo) y es fotoestable hasta 48 horas después de haberse expuesto a condiciones de luz continua. Debe hacerse todo lo posible por limitar la exposición a la luz y los cambios de temperatura.

# Equipos y materiales necesarios pero no suministrados

Se deberán utilizar los siguientes equipos calibrados:

- Placa calentadora (con una placa sólida y control de temperatura de precisión de hasta 80 °C)
- 2. Micropipetas calibradas de distintos volúmenes y puntas de 1 µl a 200 µl
- 3. Baño María con control de temperatura de precisión a 37 °C y 72 °C
- 4. Tubos de microcentrífuga (0,5 ml)
- Microscopio de fluorescencia (véase el apartado Recomendaciones sobre el microscopio de fluorescencia)
- 6. Microscopio de contraste de fases
- 7. Frascos Coplin transparentes de plástico, cerámica o vidrio termorresistente
- 8. Pinzas
- Medidor de pH calibrado (o tiras indicadoras de pH capaces de medir un pH de 6,5-8,0)
- 10. Recipiente humidificado
- 11. Aceite de inmersión para lentes de microscopio de fluorescencia
- 12. Centrífuga de sobremesa
- 13. Portaobjetos para microscopio
- 14. Cubreobjetos de 24 x 24 mm
- 15. Cronómetro
- 16. Incubadora de 37 ºC
- 17. Adhesivo de solución de caucho
- 18. Mezclador vórtex
- 19. Cilindros graduados
- 20. Agitador magnético
- 21. Termómetro calibrado

### Equipo opcional no suministrado

1. Cámara de secado citogenético

- Reactivos necesarios pero no suministrados 1. Disolución de 20xSSC (citrato de sodio salino)
- 2. Etanol al 100 %
- 3. Tween-20
- 4. 1 M de hidróxido de sodio (NaOH)
- 5. 1M de ácido clorhídrico (HCI)
- 6. Agua purificada

# Recomendaciones sobre el microscopio de fluorescencia

Para una visualización óptima, se recomienda utilizar una lámpara de mercurio de 100 vatios o equivalente y objetivos planos apocromáticos de 60/63 o 100 aumentos con aceite de inmersión. Los fluoróforos utilizados en esta sonda se excitarán y emitirán energía a las siguientes longitudes de onda:

| Fluoróforo | Excitación <sub>máx</sub> [nm] | Emisión <sub>máx</sub> [nm] |
|------------|--------------------------------|-----------------------------|
| Verde      | 495                            | 521                         |
| Rojo       | 596                            | 615                         |

Asegúrese de colocar en el microscopio los filtros de excitación y emisión adecuados para cubrir las longitudes de onda mencionadas más arriba. Para una óptima visualización simultánea de los fluoróforos verde y rojo, se recomienda utilizar un filtro de paso de banda triple DAPI/espectro verde/espectro rojo o un filtro de paso de banda doble espectro verde/espectro rojo.

Se deberá comprobar el microscopio de fluorescencia antes de su uso para confirmar que funciona correctamente. El aceite de inmersión deberá ser adecuado para la microscopía de fluorescencia y presentar baja autofluorescencia. Debe evitarse la mezcla de DAPI AntiFade con aceite de inmersión para microscopio, puesto que esto oscurecerá las señales. Se deben seguir las recomendaciones de los fabricantes relativas a la vida útil de la lámpara y la antigüedad de los filtros.

# Preparación de las muestras

El kit está diseñado para utilizarse en suspensiones de células de origen hematológico fijadas en solución fijadora de Carnoy (3:1 metanol/ácido acético), que se deberá preparar de acuerdo con las directrices del laboratorio o el centro. Se han de preparar muestras secadas al aire en portaobjetos para microscopio de acuerdo con los procedimientos citogenéticos habituales. La guía *The AGT Cytogenetics Laboratory Manual* contiene recomendaciones sobre la recogida, el cultivo y la extracción de muestras y la preparación de los portaobjetos<sup>10</sup>.

### Preparación de las soluciones

### Soluciones de etanol

Diluya etanol al 100 % con agua purificada utilizando las siguientes proporciones y mezcle minuciosamente.

- Etanol al 70 %: 7 partes de etanol al 100 % por 3 partes de agua purificada
- Etanol al 85 %: 8,5 partes de etanol al 100 % por 1,5 partes de agua purificada Conserve las disoluciones hasta seis meses a temperatura ambiente en un recipiente hermético.

#### Solución 2xSSC

Diluya 1 parte de solución de 20xSSC en 9 partes de agua purificada y mézclelo bien. Compruebe el pH y regule a 7,0 utilizando NaOH o HCl según sea necesario. Conserve la solución hasta cuatro semanas a temperatura ambiente en un recipiente hermético.

# Solución de 0,4xSSC

Diluya 1 parte de solución de 20xSSC en 49 partes de agua purificada y mézclelo bien. Compruebe el pH y regule a 7,0 utilizando NaOH o HCl según sea necesario. Conserve la solución hasta cuatro semanas a temperatura ambiente en un recipiente hermético.

### Solución de 2xSSC y Tween-20 al 0,05 %

Diluya 1 parte de solución de 20xSSC en 9 partes de agua purificada. Añada 5 µl de Tween-20 por cada 10 ml y mézclelo bien. Compruebe el pH y regule a 7,0 utilizando NaOH o HCl según sea necesario. Conserve la solución hasta cuatro semanas a temperatura ambiente en un recipiente hermético.

### Protocolo FISH

(Nota: Asegúrese de limitar la exposición de la sonda y la tinción de contraste a la luz del laboratorio en todo momento).

### Preparación de los portaobjetos

- 1. Deposite la muestra celular en un portaobjetos para microscopio de vidrio. Deje que se seque. (Alternativamente si se usa una cámara de secado citogenético: se deberán depositar las muestras en los portaobjetos usando una cámara de secado citogenético. Para un depósito óptimo de las muestras celulares, la cámara deberá funcionar a aproximadamente 25 °C con una humedad del 50 %. Si no dispone de una cámara de secado citogenético, use una campana de laboratorio en su lugar).
- Sumerja el portaobjetos en 2xSSC durante 2 minutos a temperatura ambiente sin agitación.
- Deshidrátelo en mezclas progresivas de etanol (70 %, 85 % y 100 %), durante 2 minutos en cada una a temperatura ambiente.
- Deje que se seque.

### Antes de la desnaturalización

- Saque la sonda del congelador y deje que alcance la temperatura ambiente.
   Centrifugue brevemente los tubos antes de su uso.
- 6. Mezcle uniformemente la disolución de la sonda con una pipeta.
- Extraiga 10 µl de sonda por cada ensayo y transfiéralos a un tubo de microcentrífuga. Devuelva sin demora el resto de la sonda al congelador.
- 8. Coloque la sonda y el portaobjetos con la muestra sobre una placa calefactora a 37 °C (+/- 1 °C) para precalentarlos durante 5 minutos.
  9. Deposite 10 µl de mezcla de sonda sobre la muestra celular y coloque con
- Deposite 10 µl de mezcla de sonda sobre la muestra celular y coloque con cuidado un cubreobjetos. Selle con adhesivo de disolución de caucho y deje que se seque completamente.

# Desnaturalización

 Desnaturalice simultáneamente la muestra y la sonda calentando el portaobjetos en una placa calefactora a 75 °C (+/- 1 °C) durante 2 minutos.

### Hibridación

 Coloque el portaobjetos en un recipiente húmedo y opaco a 37 °C (+/- 1 °C) toda la noche.

# Lavados después de la hibridación

- 12. Saque el DAPI del congelador y deje que alcance la temperatura ambiente.
- 13. Retire con cuidado el cubreobjetos y cualquier resto de adhesivo.
- Sumerja el portaobjetos en disolución de 0,4xSSC (pH de 7,0) a 72 °C (+/- 1 °C) durante 2 minutos sin agitación.
   Focurro el portaobjetos y sumériale en disolución de 2xSSC y Tupos 20 el portaobjetos y sumériale en disolución de 2xSSC y Tupos 20 el portaobjetos y sumériale en disolución de 2xSSC y Tupos 20 el portaobjetos y sumériale en disolución de 2xSSC y Tupos 20 el portaobjetos y sumériale en disolución de 2xSSC y Tupos 20 el portaobjetos y sumériale en disolución de 2xSSC y Tupos 20 el portaobjetos y sumériale en disolución de 2xSSC y Tupos 20 el portaobjetos y sumériale en disolución de 2xSSC y Tupos 20 el portaobjetos y sumériale en disolución de 2xSSC y Tupos 20 el portaobjetos y sumériale en disolución de 2xSSC y Tupos 20 el portaobjetos y sumériale en disolución de 2xSSC y Tupos 20 el portaobjetos y sumériale en disolución de 2xSSC y Tupos 20 el portaobjetos y sumériale en disolución de 2xSSC y Tupos 20 el portaobjetos y sumériale en disolución de 2xSSC y Tupos 20 el portaobjetos y sumériale en disolución de 2xSSC y Tupos 20 el portable en disolución de 2xSSC y Tupos 20 el portaobjetos y sumériale en disolución de 2xSSC y Tupos 20 el portaobjetos y sumériale en disolución de 2xSSC y Tupos 20 el portaobjetos y sumériale en disolución de 2xSSC y Tupos 20 el portaobjetos y sumeriale en disolución de 2xSSC y Tupos 20 el portaobjetos y sumeriale en disolución de 2xSSC y Tupos 20 el portaobjetos y sumeriale en disolución de 2xSSC y Tupos 20 el portaobjetos y sumeriale en disolución de 2xSSC y Tupos 20 el portaobjetos y sumeriale en disolución de 2xSSC y Tupos 20 el portaobjetos y sumeriale en disolución de 2xSSC y Tupos 20 el portaobjetos y sumeriale en disolución de 2xSSC y Tupos 20 el portaobjetos y sumeriale en disolución de 2xSSC y Tupos 20 el portaobjetos y sumeriale en disolución de 2xSSC y Tupos 20 el portaobjetos y sumeriale en disolución de 2xSSC y Tupos 20 el portaobjetos y sumeriale en disolución de 2xSSC y Tupos 20 el portaobjetos y sumeriale en disolución de 2xSSC y Tu
- 15. Escurra el portaobjetos y sumérjalo en disolución de 2xSSC y Tween-20 al 0,05 % a temperatura ambiente (pH de 7,0) durante 30 segundos sin aditación.
- 16. Escurra el portaobjetos y aplique 10 μl de DAPI AntiFade sobre cada muestra.
- 17. Cubra con un cubreobjetos, elimine las posibles burbujas y deje que el color se revele en la oscuridad durante 10 minutos.
- Observe con un microscopio de fluorescencia (véase el apartado Recomendaciones sobre el microscopio de fluorescencia).

# Estabilidad de los portaobjetos terminados

Los portaobjetos terminados se pueden analizar durante 1 mes si se conservan en un lugar oscuro a temperatura ambiente o inferior.

# Recomendaciones sobre el procedimiento

- El sobrecalentamiento o el envejecimiento de los portaobjetos pueden reducir la fluorescencia de la señal
- El uso de reactivos distintos a los suministrados o recomendados por Cytocell Ltd. puede afectar negativamente a las condiciones de hibridación.
- Se recomienda usar un termómetro calibrado para medir las temperaturas de las disoluciones, los baños María y las incubadoras, ya que estas temperaturas son cruciales para el funcionamiento óptimo del producto.

- 4. Las concentraciones, el pH y las temperaturas de los lavados son importantes, puesto que su aplicación laxa puede provocar una unión no específica de la sonda, mientras que una aplicación excesivamente restrictiva puede derivar en la falta de señal.
- Una desnaturalización incompleta puede ocasionar falta de señal y una desnaturalización excesiva también puede redundar en una unión no específica.
- 6. La hibridación excesiva puede dar lugar a señales adicionales o inesperadas.
- Los usuarios deberán optimizar el protocolo de sus muestras antes de utilizar el ensayo con fines diagnósticos.
- 8. Unas condiciones deficientes podrían producir una unión no específica, la cual podría malinterpretarse como una señal de la sonda.

### Interpretación de los resultados

### Evaluación de la calidad del portaobjetos

El portaobietos no se deberá analizar si se dan las siguientes condiciones:

- Las señales son demasiado débiles para analizarse con un solo filtro: para proceder a realizar el análisis, las señales deberán mostrarse intensas, distinguirse y evaluarse con facilidad.
- Hay una gran cantidad de células aglomeradas o superpuestas que dificultan el análisis
- Más del 50 % de las células no se ha hibridado.
- Hay un exceso de partículas fluorescentes entre las células o un halo fluorescente que interfiere con la señal: en los portaobjetos óptimos, el fondo debe aparecer despejado y de un color oscuro o negro.
- Los bordes del núcleo celular no se pueden distinguir y no se muestran intactos.

### Pautas para el análisis

- Cada muestra debe ser analizada e interpretada por dos analistas. Cualquier discrepancia debe resolverse mediante la valoración de un tercer analista.
- Cada analista deberá estar debidamente cualificado según los criterios nacionales reconocidos.
- Cada analista deberá puntuar de manera independiente 100 núcleos de cada muestra. El primer analista deberá comenzar el análisis por el lado izquierdo del portaobjetos y el segundo analista, por el lado derecho.
- Cada analista deberá documentar sus resultados en fichas separadas.
- Únicamente se deberán analizar los núcleos intactos: ni los núcleos superpuestos o aglutinados ni los núcleos cubiertos por restos citoplasmáticos o con un alto grado de autofluorescencia.
- Se han de evitar las zonas en las que se observe un exceso de restos citoplasmáticos o una hibridación no específica.
- La intensidad de la señal puede variar, incluso en un mismo núcleo. En esos casos, se deberá utilizar un solo filtro o ajustar el plano focal.
- En condiciones que no son óptimas, las señales pueden aparecer difusas. Los casos en que dos señales del mismo color se toquen, la distancia entre ellas sea inferior al ancho de dos señales o se perciba un tenue filamento que las conecte, contabilizarán como una sola señal.
- Si, al analizar las sondas de translocación de dos colores, se observa una separación entre las señales roja y verde no superior al ancho de dos señales, se contabilizará como una señal no reordenada o fusionada.
- Se habrán de descartar todas aquellas células cuyo análisis plantee dudas.

| Pautas para el análisis |                                                                                                                                           |  |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|
|                         | No se contabilizan: los<br>núcleos están demasiado<br>próximos para determinar los<br>límites.                                            |  |
|                         | Los núcleos que se<br>superponen no se<br>contabilizan: no todas las<br>zonas de los dos núcleos son<br>visibles.                         |  |
|                         | Se contabilizan como dos<br>señales de fusión: la<br>separación entre las señales<br>roja y verde es inferior al<br>ancho de dos señales. |  |
|                         | Se contabilizan como dos<br>señales de fusión: una de las<br>señales de fusión es difusa.                                                 |  |

### Resultados previstos

Patrón previsto de señales normales



En una célula normal, se espera observar dos señales de fusión rojo-verde (2 F). Patrón previsto de señales anómalas



En una célula con un reordenamiento equilibrado del gen *AML1* (*RUNX1*), el patrón de señal previsto será de una señal roja, una señal verde y una señal de fusión (1 R. 1 V. 1 F).

Es posible observar otros patrones de señales en muestras aneuploides o no equilibradas.

### Reactividad cruzada conocida

No se ha detectado ninguna reactividad cruzada.

### Notificación de acontecimientos adversos

Si cree que este producto ha funcionado incorrectamente o ha sufrido un deterioro de sus características de rendimiento que haya podido contribuir a que se produzca un acontecimiento adverso (como, por ejemplo, el retraso en un diagnóstico o un diagnóstico erróneo, el retraso en un tratamiento o un tratamiento inadecuado), deberá notificarlo de inmediato al fabricante (correo electrónico: vigilance@ogt.com).

Si corresponde, también debe informar de lo sucedido a las autoridades competentes de su país. Se puede consultar una lista de puntos de contacto de vigilancia en la siguiente dirección: <a href="http://ec.europa.eu/growth/sectors/medical-devices/contacts/">http://ec.europa.eu/growth/sectors/medical-devices/contacts/</a>.

### Características específicas sobre el rendimiento Especificidad analítica

La especificidad analítica es el porcentaje de señales que hibridan con el locus correcto y no con otros puntos. La especificidad analítica se estableció mediante el análisis de un total de 200 locus de interés. La especificidad analítica se calculó como el número de señales de FISH que hibridan con el locus correcto dividido por el número total de señales de FISH hibridadas.

Tabla 1. Especificidad analítica de AML1 Breakapart Probe

| Sonda         | Locus<br>de<br>interés | N.º de señales<br>hibridadas con<br>el locus correcto | N.º total de<br>señales<br>hibridadas | Especificidad<br>(%) |
|---------------|------------------------|-------------------------------------------------------|---------------------------------------|----------------------|
| Roja<br>AML1  | 21q22                  | 200                                                   | 200                                   | 100                  |
| Verde<br>AML1 | 21q22                  | 200                                                   | 200                                   | 100                  |

### Sensibilidad analítica

La sensibilidad analítica es el porcentaje de células en interfase puntuables que presentan el patrón previsto de señales normales. La sensibilidad analítica se estableció mediante el análisis de células en interfase de distintas muestras normales. La sensibilidad se calculó como el porcentaje de células puntuables que presentan el patrón previsto de señales normales (con un intervalo de confianza del 95 %).

Tabla 2. Sensibilidad analítica de AML1 Breakapart Probe

| N.º de células con<br>patrones de<br>señales previstos | N.º de células<br>con señales<br>puntuables | Sensibilidad<br>(%) | Intervalo de<br>confianza del<br>95 % |
|--------------------------------------------------------|---------------------------------------------|---------------------|---------------------------------------|
| 4974                                                   | 5000                                        | 99,48               | 99,24-99,64                           |

### Caracterización de los valores de corte normales

El valor de corte normal, con respecto a las sondas de FISH, es el porcentaje máximo de células en interfase puntuables que presentan un patrón de señales anómalas específico en el que una muestra se considera normal para ese patrón de señales

El valor de corte normal se estableció usando muestras negativas para el reordenamiento que la sonda debe detectar y la función inversa beta. Dos analistas independientes registraron por cada muestra los patrones de señales de 100 núcleos en interfase, lo que supuso un total de 200 por muestra.

Tabla 3. Caracterización de los valores de corte normales de AML1 Breakapart Probe

| Patrón de<br>señales<br>anómalas | Número de<br>muestras<br>analizadas<br>para<br>generar el<br>corte | Número de<br>núcleos<br>evaluados<br>por<br>muestra | N.º máx. de<br>patrones de<br>señales<br>con falsos<br>positivos | Valor de<br>corte<br>normal (%) |
|----------------------------------|--------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------|---------------------------------|
| 1 R, 1 V, 1 F                    | 25                                                                 | 200                                                 | 2                                                                | 3,5                             |

Los laboratorios deberán verificar los valores de corte usando sus propios datos<sup>11,12</sup>.

### Precisión y reproducibilidad

La reproducibilidad se determinó en tres laboratorios distintos que analizaron seis muestras enmascaradas (dos muestras negativas para el reordenamiento, dos muestras levemente positivas con valores de una a tres veces el valor de corte y dos muestras altamente positivas que contenían más del 45 % de células positivas para el reordenamiento). El análisis se llevó a cabo usando dos copias de cada muestra en el transcurso de cinco días no consecutivos.

Los tres laboratorios llevaron a cabo ensayos intradiarios, interdiarios y entre laboratorios usando sondas de un mismo lote. Uno de los laboratorios analizó la reproducibilidad entre lotes usando sondas procedentes de tres lotes distintos.

La reproducibilidad se calculó a partir de la concordancia entre las variables examinadas en cada prueba.

Tabla 4. Reproducibilidad y precisión de AML1 Breakapart Probe

| Estudio de reproducibilidad | Muestra            | Concordancia (%) |
|-----------------------------|--------------------|------------------|
| Intradiaria, interdiaria y  | Negativa           | 100              |
| entre laboratorios          | Altamente positiva | 100              |
| Entre lotes                 | Negativa           | 100              |
| Entile lotes                | Altamente positiva | 100              |

### Rendimiento clínico

El rendimiento clínico se determinó usando un grupo representativo de 100 muestras consecutivas extraídas de pacientes derivados por LMA o SMD. Las tasas de incidencia de los reordenamientos detectados por la sonda se compararon con las derivadas de una revisión de distintas fuentes bibliográficas.

A efectos de esta comparación, se calculó el intervalo de confianza indicado en la bibliografía en un tamaño poblacional de 100 muestras mediante la fórmula «1 – prueba de proporciones de la muestra con corrección de continuidad».

Tabla 5. Rendimiento clínico de AML1 Breakapart Probe

|                                        | Prevalencia                      |                     |                           |                     |
|----------------------------------------|----------------------------------|---------------------|---------------------------|---------------------|
| Reordenamiento                         | Revisión<br>bibliográfica<br>(%) | ICI del 95<br>% (%) | Estudio<br>clínico<br>(%) | LSC del<br>95 % (%) |
| LMA con<br>reordenamientos de<br>RUNX1 | 3,8                              | 1,2                 | 2                         | 10,2                |

### Información adicional

Para obtener información adicional sobre el producto, póngase en contacto con el departamento de asistencia técnica de CytoCell.

Teléfono: +44 (0)1223 294048

Correo electrónico: techsupport@cytocell.com

Página web: www.ogt.com

# Bibliografía

- Jamil A et al. Cancer Genet Cytogenet. 2000;122(2):73-8.
- Swerdlow et al. (eds). WHO Classification of Tumours of Haematopoietic and Lymphoid Tissue. Lyon, France, 4th edition, IARC, 2017.
- 3. Reikvam H, et al. J Biomed Biotechnol. 2011; 2011:104631.
- 4. Shurtleff et al. Leukemia. 1995 Dec;9(12):1985-9.
- 5. Cho et al. Korean J Intern Med. 2003 Mar;18(1):13-20.
- 6. De Braekeleer et al. Anticancer Research. 2009;29(4):1031-1038.
- 7. Niini T. Haematologica 2000;85(4):362-6.
- 8. Harewood et al. Leukemia. 2003 Mar;17(3):547-53.
- Robinson HM et al. Leukemia. 2003;17(11):2249-50.
- Arsham MS, Barch MJ and Lawce HJ (eds). (2017) The AGT Cytogenetics Laboratory Manual. New Jersey: John Wiley & Sons Inc.
- Mascarello JT, Hirsch B, Kearney HM, et al. Section E9 of the American College of Medical Genetics technical standards and guidelines: fluorescence in situ hybridization. Genet Med. 2011;13(7):667-675.
- Wiktor AE, Dyke DLV, Stupca PJ, Ketterling RP, Thorland EC, Shearer BM, Fink SR, Stockero KJ, Majorowicz JR, Dewald GW. Preclinical validation of fluorescence in situ hybridization assays for clinical practice. Genetics in Medicine. 2006;8(1):16–23.

### Guía de símbolos

| REF             | es: Número de catálogo                           |  |
|-----------------|--------------------------------------------------|--|
| IVD             | es: Producto sanitario para diagnóstico in vitro |  |
| LOT             | es: Código de lote                               |  |
| []i             | es: Consulte las instrucciones de uso            |  |
|                 | es: Fabricante                                   |  |
| $\sum$          | es: Fecha de caducidad                           |  |
| -25°C15°C       | es: Límite de temperatura                        |  |
| 类               | es: Manténgase alejado de la luz solar           |  |
| $\sum_{\Sigma}$ | es: Contiene suficiente para <n> ensayos</n>     |  |
| CONT            | es: Contenido                                    |  |

### Patentes y marcas comerciales

CytoCell es una marca comercial registrada de Cytocell Ltd.



Cytocell Ltd.

Oxford Gene Technology,
418 Cambridge Science Park,
Milton Road,
Cambridge, CB4 0PZ, Reino Unido
Teléfono: +44(0)1223 294048
Fax: +44(0)1223 294986
Correo electrónico: probes@cytocell.com

Sitio web: www.ogt.com