

Mode d'emploi

REF: LPH 045-S/LPH 045

IGH/MYEOV Translocation, Dual Fusion Probe

RÉSERVÉ À UN USAGE PROFESSIONNEL

Informations supplémentaires et autres langues disponibles sur www.ogt.com

Limitations

Ce dispositif est conçu pour détecter les réorganisations avec points de cass u re dans les régions liées par les clones rouges et verts de l'ensemble de sondes, qui comprend les gènes *IGH*, *MYEOV* et *CCND1*. Il est possible que les points de cassure situés hors de ces régions ou les variantes de réorganisation entièrement contenues dans ces régions, telles que les insertions, ne soient pas détectés par ce produit.

Ce test ne convient pas aux applications suivantes : diagnostic autonome, dépistage prénatal, dépistage basé sur la population, test auprès du patient ou autotest. Ce produit est destiné à une utilisation professionnelle en laboratoire uniquement : tous les résultats doivent être interprétés par un personnel qualifié

qui saura tenir compte d'autres résultats de tests pertinents. Ce produit n'a pas été validé pour une utilisation sur des échant i llons ou des maladies non spécifiés dans l'utilisation prévue.

La création de rapports et l'interprétation des résultats de la FISH doivent être conformes aux pratiques professionnelles de référence et tenir compte d'autres informations cliniques et diagnostiques. Ce kit est destiné à compléter d'autres tests diagnostiques de laboratoire, et aucune mesure thérapeutique ne doit être débutée sur la seule base du résultat de la FISH.

Le non-respect du protocole peut affecter les performances du produit et entraîner des faux positifs/négatifs.

Ce kit n'a pas été validé pour d'autres applications que celles indiquées dans ce document.

CytoCell IGH/MYEOV Translocation, Dual Fusion Probe est un test qualitatif non automatisé d'hybridation in situ par fluorescence (FISH) utilisé pour détecter les réorganisations chromosomique entre la région 11q13.3 du chromosome 11 et la région 14q32.3 du chromosome 14 dans des suspensions cellulaires d'origine hématologique fixées dans une solution de Carnoy (3:1 méthanol/acide acétique) provenant de patients atteints d'un lymphome à cellules du manteau (LCM) ou un myélome multiple (MM) confirmé ou suspecté.

Indications

Ce produit est conçu comme complément à d'autres analyses cliniques et histopathologiques dans le cadre d'un parcours diagnostique et clinique reconnu, pour lequel il est important de connaître le statut de la translocation IGH-MYEOV/CCND1 pour la prise en charge clinique.

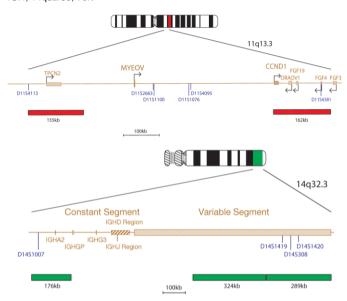
Principes du test

L'hybridation in situ par fluorescence (FISH) permet de détecter des séquences d'ADN sur des chromosomes en métaphase ou dans les noyaux interphasiques d'échantillons cytogénétiques fixés. Cette technique utilise des sondes ADN qui s'hybrident à des chromosomes entiers ou à des séquences uniques spécifiques, et complète efficacement l'analyse cytogénétique en bandes G. Cette technique peut désormais être utilisée comme outil d'investigation essentiel dans l'analyse prénatale, hématologique, ainsi que dans l'analyse chromosomique des tumeurs solides. Après fixation et dénaturation, l'ADN cible est disponible pour l'annelage à une sonde ADN comportant une séquence complémentaire, dénaturée de façon similaire et marquée par fluorescence. Après l'hybridation, la son de ADN non liée et non liée spécifiquement est retirée et l'ADN est contre-coloré pour la visualisation. Un microscope à fluorescence permet alors la visualis ation de la sonde hybridée sur le matériel cible.

Informations sur la son de

Le gène MYEOV (myélome surexprimé) est situé sur le 11g13.3 et IGH (locus des chaînes lourdes d'immunoglobuline) sur 14q32.33.

Environ 50 à 60 % des cas de myélome multiple (MM) sont associés à des translocations impliquant IGH et un parteraire parmi les suivants : CCND1, NSD2 (WHSC1) et FGFR3, CCND3, MAF ou MAFB¹.


La translocation t(11;14)(q13;q32) est la translocation la plus fréquente en cas de MM, où elle est observée dans environ 15 % des cas^{2,3}.

Contrairement au lymphome à cellules du manteau (LCM) où les points de cassure sont regroupés dans une région de 1kb centromèrique de 120kb au gène CCND1⁴, les points de cassure dans les cas de MM sont dispersés sur une région de 360kb entre CCND1 et MYEOV sur 11q13⁵. MYEOV est un oncogène possible situé dans une région de 360kb centromérique au gène CCND1, dont on pense qu'il est activé lors de la translocation, en raison de sa proche association avec les amplificateurs d'IGH. Contrairement aux réorganisations d'IGH dans le cas d'autres néoplasmes, celles observées avec le MM concernent des points de cassure d'IGH principalement dans la région C/J, qui, dans le cas de MYEOV, placent le gène MYEOV sous le contrôle de l'amplificateur 3' Eα15. En revanche, pour les translocations CCND1, l'amplificateur Eu contrôle l'expression de CCND1. La surexpression de MYEOV est un facteur pronostic possible du MM6.

La t(11;14)(q13;q32) est associée à une issue favorable dans la plupart des séries et par conséquent, considérée comme neutre en ce qui concerne le pronostic³.

Caractéristiques des sondes

MYEOV, 11q13.3, Rouge IGH, 14q32.33, Vert

Le produit IGH/MYEOV est composé de sondes marquées en vert couvrant le s segments constants et variables du gène IGH, et de sondes MYEOV mar quées en rouge. Le mélange de sondes MYEOV contient une sonde de 155kb centromérique au gène MYEOV, qui comprend le marqueur TPCN2, et une seconde sonde télomérique au gène couvrant une région de 162kb comprenant les marqueurs CCND1 et ORAOV1.

Matériel fourni

Sonde: 50 µl par flacon (5 tests) ou 100 µl par flacon (10 tests)

Les sondes sont fournies préalablement mélangées dans une solution d'hybridation (formamide, sulfate de dextrane, solution saline de citrate de sodium (SSC)) et sont prêtes à l'emploi.

 $\begin{array}{l} \textbf{\textit{Contre-coloration}} \colon 150 \; \mu \text{l par flacon (15 tests)} \\ \text{La contre-coloration DAPI/antifade est utilisée (ES} \colon 0,125 \; \mu \text{g/ml DAPI (4,6-1)} \\ \end{array}$ diamidino-2-phenylindole)).

Avertissements et précautions

- Utilisation réservée au diagnostic in vitro. Exclusivement réservé à un usage
- Le port de gants est obligatoire lors de la manipulation de sondes ADN et de contre-coloration DAPI.
- Les mélanges des sondes contiennent du formamide, un agent tératogène. Ne pas respirer les vapeurs et éviter tout contact cutané. Porter des gants, une blouse de laboratoire et manipuler sous une hotte aspirante. Lors de la mise au rebut, rincer avec un grand volume d'eau.
- La coloration DAPI est potentiellement cancérogène. Ce produit doit être manipulé avec précaution : le port de gants et d'une blouse de laboratoire est obligatoire. Lors de la mise au rebut, rincer avec un grand volume d'eau.
- Les matériaux dangereux doivent être éliminés conformément aux directives de votre établissement relatives à l'élimination des déchets dangereux.
- Les opérateurs doivent pouvoir distinguer les couleurs rouge, bleue et verte. Le non-respect du protocole spécifié et des instructions relatives aux réactifs 7.
- peut affecter les performances du produit et entraîner des faux positifs/négatifs.
- 8. La sonde ne doit pas être diluée ou mélangée avec d'autres sondes.

La non-utilisation de 10 µl de sonde durant l'étape de pré-dénaturation du protocole peut affecter les performances et entraîner des faux positifs/négatifs.

Conservation et manipulation

Le kit doit être conservé entre -25 °C et -15 °C au congélateur jusqu'à la date d'expiration indiquée sur l'étiquetage du kit. La sonde et les flacons de contre-coloration doivent être conservés dans l'obscurité.

La sonde reste stable pendant les cycles de congélation/décongélation qui interviennent dans le cadre d'une utilisation normale (un cycle correspond au retrait puis au replacement de la sonde au congélateur). Elle est photostable jusqu'à 48 heures après une exposition continue à la lumière. Il est essentiel de limiter l'exposition aux variations de lumière et de température.

Équipement et matériel nécessaires non fournis

L'équipement utilisé doit être calibré :

- Plaque chauffante (avec plaque solide et contrôle précis de la température jusqu'à 80 °C)
- Micropipettes calibrées de volume variable et embouts de 1 µl à 200 µl Bain-marie avec contrôle précis de la température à 37 °C et 72 °C
- Tube pour microcentrifugeuse (0,5 ml)
- Microscope à fluorescence (consulter la section Recommandations relatives à la microscopie à fluorescence)
- Microscope à contraste de phase
- Bocaux Coplin propres en plastique, céramique ou verre réfractaire
- Forceps
- 9. pH-mètre calibré (ou bandelettes de pH pouvant mesurer un pH de 6,5 à 8.0)
- 10. Récipient humidifié
- Huile d'immersion de l'objectif du microscope à fluorescence
- Centrifugeuse de paillasse
- Lames pour microscope
- Lamelles couvre-objet de 24 x 24 mm
- Minuteur
- 16.
- Incubateur à 37 °C Colle à base de caoutchouc 17.
- Agitateur vortex 18.
- Éprouvettes graduées 19
- Agitateur magnétique
- Thermomètre calibré

Équipement en option non fourni

Chambre de séchage cytogénétique

Réactifs nécessaires, mais non fournis

- Solution saline de citrate de sodium (SSC) x20 Éthanol à 100 %
- 2.
- Tween-20
- Hydroxyde de sodium (NaOH) 1 M
- Acide chlorhydrique (HCI) 1 M
- Eau purifiée

Recommandations relatives à la microscopie à fluorescence

Utiliser une lampe à mercure de 100 watts ou un équivalent, et des objectifs plans apochromatiques à immersion dans l'huile x60/63 ou x100 pour une visualisation optimale. Les fluorophores utilisés pour cet ensemble de sondes excitent et émettent les longueurs d'onde suivantes :

Fluorochrome	Excitation _{max} [nm]	Émission _{max} [nm]
Vert	495	521
Rouge	596	615

Vérifier que les filtres d'excitation et d'émission appropriés couvrant les longueurs d'onde indiquées ci-dessus sont installés dans le microscope. Utiliser un filtre passe-bande triple DAPI/spectre vert/spectre rouge ou un filtre passe-bande double pour spectre vert/rouge pour une visualisation simultanée optimale des fluorophores verts et rouges.

Vérifier le microscope à fluorescence avant utilisation pour vérifier qu'il fonctionne correctement. Utiliser de l'huile d'immersion adaptée à la microscopie à fluores cence et formulée pour une auto-fluores cence faible. Éviter de mélanger du DAPI/antifade avec l'huile d'immersion pour microscope, car cela aura pour effet d'obscurcir les signaux. Suivre les recommandations du fabricant concernant la durée de vie de la lampe et l'ancienneté des filtres.

Préparation des échantillons

Ce kit est conçu pour être utilisé sur des suspensions cellulaires d'origine hématologique fixées dans une solution de Carnoy (3:1 méthanol/acide acétique), et préparées conformément aux directives du laboratoire ou de l'établiss e ment. Préparer des échantillons séchés à l'air sur des lames pour microscope, conformément aux procédures cytogénétiques de référence. Le manuel Cytogenetics Laboratory Manual de l'AGT contient des recommandations sur le prélèvement des spécimens, la mise en culture, le recueil et la préparation des

Préparation des solutions

Solutions d'éthanol

Diluer de l'éthanol à 100 % avec de l'eau purifiée en respectant les proportions suivantes, puis mélanger soigneusement.

- Éthanol à 70 %: 7 volumes d'éthanol à 100 % pour 3 volumes d'eau purifiée
- Éthanol à 85% : 8,5 volumes d'éthanol à 100 % pour 1,5 volumes d'eau purifiée

Les solutions peuvent être conservées jusqu'à 6 mois à température ambiante dans un contenant hermétique.

2 x solution SSC

Diluer un volume de solution 20xSSC avec 9 volumes d'eau purifiée et mélanger soigneusement. Vérifier le pH et l'ajuster à 7,0 à l'aide de NaOH ou de HCl si nécessaire. La solution peut être conservée jusqu'à 4 semaines à température ambiante dans un contenant hermétique.

0,4 x solution SSC

Diluer un volume de solution 20xSSC avec 49 volumes d'eau purifiée et mélanger soigneusement. Vérifier le pH et l'ajuster à 7,0 à l'aide de NaOH ou de HCI si nécessaire. La solution peut être conservée jusqu'à 4 semaines à température ambiante dans un contenant hermétique.

2 x SSC, solution Tween-20 à 0,05 %

Diluer un volume de solution 20xSSC avec 9 volumes d'eau purifiée. Ajouter 5 µl de Tween-20 pour 10 ml et mélanger soigneusement. Vérifier le pH et l'ajuster à 7,0 à l'aide de NaOH ou de HCI si nécessaire. La solution peut être conservée jusqu'à 4 semaines à température ambiante dans un contenant hermétique.

Protocole FISH

(Remarque : limiter en tout temps l'exposition de la sonde et de la contrecoloration à la lumière du laboratoire.)

Préparation des lames

- Déposer une goutte d'échantillon cellulaire sur une lame pour microscope en verre. Laisser sécher. (Facultatif, en cas d'utilisation d'une chambre de séchage cytogénétique : les gouttes doivent être appliquées sur les lames à l'aide d'une chambre de séchage cytogénétique. La chambre doit fonctionner à environ 25 °C avec un taux d'humidité de 50 % pour garantir l'application optimale de l'échantillon cellulaire. En l'absence de chambre de séchage cytogénétique, il est possible d'utiliser une hotte aspirante.)
- Immerger la lame dans 2xSSC pendant 2 minutes à température am biante (TA) sans agitation.
- Déshydrater par une série de bains d'éthanol (70 %, 85 % et 100 %), pendant 2 minutes à TA à chaque fois. 3
- Laisser sécher.

Pré-dénaturation

- Retirer la sonde du congélateur et la laisser se réchauffer à TA. Centrif u ger rapidement les tubes avant utilisation.
- Vérifier que la solution de la sonde est mélangée de façon homogène à l'aide d'une pipette
- Prélever 10 ul de sonde par test et transférer ce volume dans un tube de microcentrifugeuse. Replacer rapidement le reste de la sonde au
- Mettre la sonde et la lame de l'échantillon à préchauffer à 37 °C (+/- 1 °C) sur la plaque chauffante pendant 5 minutes.
- Appliquer 10 µl de mélange de sonde sur l'échantillon cellulaire et appliquer soigneusement une lamelle couvre-objet. Sceller avec de la colle à base de caoutchouc et laisser la colle sécher complètement.

Dénaturer l'échantillon et la sonde simultanément en chauffant la lame sur une plaque chauffante à 75 °C (+/-1 °C) pendant 2 minutes.

Hybridation

11. Placer la lame dans un contenant humide et opaque à 37 °C (+/- 1 °C) toute la nuit.

Lavages post-hybridation

- 12. Retirer le DAPI du congélateur et le laisser se réchauffer à TA.
- 13. Retirer soigneusement la lamelle couvre-objet et toutes les traces de colle.
- Immerger la lame dans 0,4 x SSC (pH 7,0) à 72 °C (+/- 1 °C) pendant 14.
- 2 minutes sans agitation. Vider la lame et l'immerger dans 2 x SSC et Tween-20 à 0,05 % à TA (pH 7,0) pendant 30 secondes sans agitation.
- Vider la lame et appliquer 10 µl de DAPI/antifade sur chaque échantillon.
- Appliquer une lamelle couvre-objet, éliminer les bulles d'air et laisser la couleur se développer dans le noir pendant 10 minutes.
- Observer avec un microscope à fluorescence (voir Recommandations relatives à la microscopie à fluorescence). 18.

Stabilité des lames finalisées

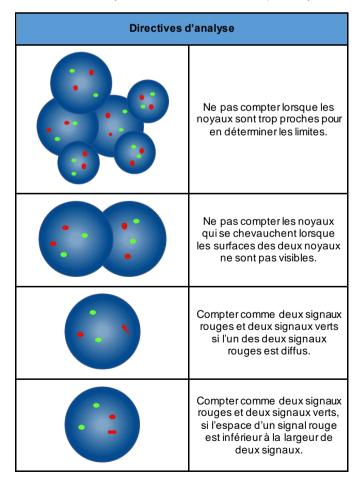
Les lames finalisées restent analysables jusqu'à 1 mois si celles-ci sont conservées dans l'obscurité à TA ou à une température inférieure.

Recommandations sur les procédures

- La cuisson et le vieillissement des lames peuvent réduire la fluorescence du signal
- L'utilisation d'autres réactifs que ceux fournis ou recommandés par Cytoce II Ltd. peut avoir une influence négative sur les conditions d'hybridation. Utiliser un thermomètre calibré pour mesurer la température des solutions,
- des bains-maries et des incubateurs, car ces températures sont essentielles pour garantir des performances optimales du produit.
- Les concentrations, le pH et les températures du lavage sont importants, car une stringence faible peut entraîner une liaison non spécifique de la sonde, et une stringence élevée une perte de signal.

- Une dénaturation incomplète peut entraîner une perte de signal, et une dénaturation excessive peut également entraîner une liaison non spécifique.
- L'hybridation excessive peut entraîner des signaux supplémentaires ou inattendus.
- Les utilisateurs doivent optimiser le protocole pour leurs propres échantillons avant d'utiliser le test à des fins diagnostiques.
- Des conditions sous-optimales peuvent entraîner une liaison non spécifique qui peut être interprétée de façon erronée comme un signal de la sonde.

Interprétation des résultats


Évaluation de la qualité des lames

La lame ne doit pas être analysée dans les cas suivants :

- Les signaux sont trop faibles pour permettre une analyse avec des filtres uniques. Pour l'analyse, les signaux doivent être clairs, distincts et facil es à évaluer.
- L'analyse est obstruée par un grand nombre de cellules agglutinées ou se chevauchant.
- Plus de 50 % des cellules ne sont pas hybridées.
- Les particules fluorescentes sont trop nombreuses entre les cellules et/ou un halo fluorescent interfère avec le signal - une lame optimale comporte un arrière-plan sombre ou noir et propre.
- Les bords des noyaux cellulaires ne peuvent pas être distingués et ne sont pas intacts.

Directives d'analyse

- Chaque échantillon doit être analysé et interprété par deux analystes. Tout e différence doit être évaluée par un troisième analyste.
- Chaque analyste doitêtre qualifié conformément aux normes nationales reconnues.
- Chaque analyste doit évaluer indépendamment 100 noyaux pour chaque échantillon. Le premier analyste doit commencer l'analyse par le côté gauche de la lame et le deuxième par le côté droit.
- Chaque analyste doit consigner ses résultats dans des fiches distinctes.
- Seuls les noyaux intacts doivent être analysés. Les noyaux se chevauchant, agglutinés ou couverts par des débris cytoplasmiques ou associés à un degré élevé d'auto-fluorescence ne doivent pas être analysés.
- Éviter les zones présentant des débris cytoplasmiques trop nombreux ou une hybridation non spécifique.
- L'intensité du signal peut varier, même avec un seul noyau. Dans ce cas, utiliser des filtres uniques et/ou ajuster le plan focal.
- Le signal peut apparaître diffus si les conditions sont suboptimales. Si de ux signaux de la même couleur se touchent, ou si la distance qui les sépare est inférieure à la largeur de deux signaux, ou lorsqu'un brin ténu connecte les deux signaux, ils doivent être comptés comme un seul et même signal.
- Si le caractère analysable d'une cellule est incertain, ne pas l'analyser.

Résultats attendus

Séquence de signaux normaux attendue

Pour une cellule normale, deux signaux rouges et deux signaux verts (2R, 2V) sont attendus.

Séquence de signaux anormaux attendue

Dans une cellule présentant une translocation t(11;14)(q13;q32.3), la séquence de signaux attendue correspondra à un signal rouge, un signal vert et deux fusions (1R, 1V, 2F).

D'autres séquences de signaux sont possibles pour les spécimens aneuploïdes/déséquilibrés. Veuillez noter qu'en présence d'autres réorganisations d'IGH, à l'exception de la translocation IGH/MYEOV, le signal d'IGH vert peut sembler divisé.

Réactivité croisée connue

La sonde verte d'IGH peut montrer une hybridation croisée avec 15q11.2 et 16p11.2.

Signalement des événements indésirables

Si vous pensez que ce dispositif a présenté un dysfonctionnement ou une détérioration de ses caractéristiques de performances, susceptible d'avoir contribué à un événement indésirable (ex. : retard ou erreur de diagnostic/traitement), vous devez le signaler au fabricant sans délai (courriel: vigilance@ogt.com).

Si applicable, l'événement doit également être signalé à l'autorité nationale compétente. Vous trouverez une liste des interlocuteurs pour les que stions de vigilance à l'adresse suivante : http://ec.europa.eu/growth/sectors/medical-devices/contagts/

Caractéristiques de performances spécifiques

Les laboratoires doivent vérifier les valeurs seuils à partir de leurs propres données 8.9.

Spécificité analytique

La spécificité analytique correspond au pourcentage de signaux qui s'hybrident au locus correct et nulle part ailleurs. La spécificité analytique a été établie par l'analyse de 200 loci cibles. La spécificité analytique a été calculée comme le nombre de signaux FISH hybridés au locus correct divisé par le nombre total de signaux FISH hybridés.

Tableau 1 Spécificité analytique d'IGH/MYEOV Translocation, Dual Fusion Probe

Sonde	Locus cible	Nombre de signaux hybridés au locus correct	Nombre total de signaux hybridés	Spécificité (%)
Rouge MAFB	11q13.3	200	200	100
Vert IGH	14q32.33	200	200	100

Sensibilité analytique

La sensibilité analytique correspond au pourcentage de cellules en interphas e évaluables dans la séquence de signaux normaux attendue. La sensibilité analytique a été établie en analysant des cellules en interphase de plusieurs échantillons normaux. La sensibilité a été calculée comme le pourcentage de cellules évaluables pour la séquence de signaux attendue (avec un intervalle de confiance de 95 %).

Tableau 2 Sensibilité analytique d'IGH/MYEOV Translocation, Dual Fusion Probe

Nombre de cellules avec des séquences de signaux attendues	Nombre de cellules avec des signaux évaluables	Sensibilité (%)	Intervalle de confiance de 95 %
468	500	93,6	2,2

Précision et reproductibilité

La précision est la mesure de la variation naturelle d'un test lorsqu'il est répété plusieurs fois dans des conditions identiques. Elle a été évaluée en analysant les répétitions d'un numéro de lot de sonde testé sur un seul et même échantillon, dans des conditions identiques au cours de la même journée.

La reproductibilité est une mesure de la variabilité d'un test et a été établie en termes de variabilité d'un échantillon à l'autre, d'un jour à l'autre et d'un lot à l'autre. La reproductibilité d'un jour à l'autre a été évaluée en analysant les

mêmes échantillons sur trois jours différents. La reproductibilité d'un lot à l'autre a été évaluée en analysant les mêmes échantillons à l'aide de trois numéros de lot de sonde différents au cours de la même journée. La reproductibilité d'un échantillon à l'autre a été évaluée en analysant trois réplicats d'un échantillon a u cours de la même journée. Pour chaque échantillon, les séquences de signaux de 100 cellules en interphase ont été enregistrées, et le pourcentage des cellules avec une séquence de signaux attendue a été calculé.

La reproductibilité et la précision ont été calculées comme l'écart-type (ET) entre les réplicats pour chaque variable et la moyenne de l'ET global.

Tableau 3 Reproductibilité et précision d'IGH/MYEOV Translocation, Dual Fusion Probe

Variable	Écart-type (ET)
Précision	0,00
D'un échantillon à l'autre	0,00
D'un jour à l'autre	0,00
D'un lot à l'autre	0,00
Écart global	0,00

Autres renseignements

Pour plus d'informations sur le produit, contactez le service d'assistance technique de CytoCell.

Tél.: +44 (0)1223 294048

Courriel: techsupport@cytocell.com

Site web: www.ogt.com

Références

- Fonseca et al., Cancer Res 2004;64:1546-1558
- Fonseca et al., Leukemia 2009;23(12):2210-2221
- Sawyer, Cancer Genetics 2011;204(1):3-12
- Ronchetti et al., Blood 1999 93(4):1330-1337
- Janssen et al., Blood. 2000 15;95(8):2691-2698
- Moreaux et al., ExpHaematol 2010; 38(12):1189-1198 Arsham, MS., Barch, MJ. and Lawce HJ. (eds.) (2017) *The AGT*
- Arsham, MS., Barch, MJ. and Lawce HJ. (eds.) (2017) *The AGT Cytogenetics Laboratory Manual*. New Jersey: John Wiley & Sons Inc. Mascarello JT, Hirsch B, Kearney HM, et al. Section E9 of the American College of Medical Genetics technical standards and guidelines: fluorescence in situ hybridization. Genet Med. 2011;13(7):667-675. Wiktor AE, Dyke DLV, Stupca PJ, Ketterling RP, Thorland EC, Shearer BM, Fink SR, Stockero KJ, Majorowicz JR, Dewald GW. *Preclinical validation of*
- fluorescence in situ hybridization assays for clinical practice. Genetics in Medicine. 2006;8(1):16-23.

Guide des symboles

REF	fr : Numéro de référence
IVD	fr : Dispositif médical de diagnostic in vitro
LOT	fr : Numéro de lot
[]i	fr : Consulter le mode d'emploi
	fr : Fabricant
	fr : Date de péremption
-25°C	fr : Limite de température
类	fr : Tenir à l'abri de la lumière du soleil
Σ	fr : Quantité suffisante pour <n> tests</n>
CONT	fr : Contenu

Brevets et marques déposées

CytoCell est une marque déposée de Cytocell Ltd.

Cytocell Ltd.

Oxford Gene Technology, 418 Cambridge Science Park, Milton Road,

Milton Road, Cambridge, CB4 0PZ, UK Tél.: +44(0)1223 294048 Fax: +44(0)1223 294986 Courriel: probes@cytocell.com Site web: www.ogt.com