

Gebrauchsanweisung (IFU)

REF: CE-LPA 003-S / CE-LPA 003

Prenatal 13 and 21 Enumeration Probe Kit

NUR FÜR DEN PROFESSIONELLEN GEBRAUCH

Weitere Informationen und andere Sprachen erhältlich unter ogt.com/ IFU

Verwendungszweck

Das CytoCell® Prenatal 13 and 21 Enumeration Probe Kit ist ein hochwertiger, nicht automatisierter Fluoreszenz-*in-situ*-Hybridisierungstest (FISH) zum Nachweis von chromosomalen Deletionen in den Regionen 13q14.2 und 21q22.1 in mit Carnoy'scher Lösung (3:1 Methanol/Essigsäure) fixierten, aus Fruchtwasserproben gewonnen Zellen bei der Auszählung der Chromosomen 13 und 21 bei Hochrisikoschwangerschaften mit Verdacht auf Down- oder Patau-Syndrom.

Gebrauchshinweise

Dieses Produkt ist als Ergänzung zu anderen klinischen und Labortests anerkannten diagnostischen und klinischen Versorgungspfaden konzipiert, wie z.B. Ultraschall-Screening und biochemische Tests, bei denen die Kenntnis des Kopienzahlstatus der Region des Chromosoms 13q14.2 und des Chromosoms 21q22.1 für die Behandlung des Patienten wichtig wäre.

Einschränkungen

Dieses Produkt ist für den Nachweis von chromosomalem Material ausgelegt, das die Regionen des Chromosoms 13q14.2 und des Chromosoms 21q22.1 umfasst, die von den grünen bzw. orangen Klonen in diesem Sondenset abgedeckt werden. Genomische Zugewinne oder Verluste außerhalb dieser Regionen oder partielle Zugewinne oder Verluste dieser Regionen können mit diesem Produkt nicht arkannt werden.

Dieses Produkt ist nicht für die eigenständige Diagnostik, begleitende Diagnostik, das populationsbasierte Screening, patientennahe Untersuchungen oder Selbsttests geeignet und wurde ausschließlich für die Probentypen, Krankheitstypen oder Zwecke validiert, die unter "Verwendungszweck" aufgeführt sind

Dieses Produkt ist als Ergänzung zu anderen diagnostischen Labortests gedacht und es sollten nicht allein aufgrund des FISH-Ergebnisses therapeutische Maßnahmen eingeleitet werden.

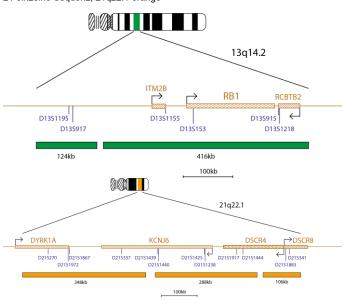
Die Meldung und Auslegung der FISH-Ergebnisse sollte von entsprechend geschultem Personal durchgeführt werden, den professionellen Praxisstandards entsprechen und weitere relevante Testergebnisse sowie klinische und diagnostische Informationen berücksichtigen.

Dieses Produkt ist nur für den professionellen Gebrauch im Labor vorgesehen. Die Nichteinhaltung des Protokolls kann sich nachteilig auf die Leistung auswirken und zu falsch positiven/negativen Ergebnissen führen.

Grundprinzipien des Tests

Bei der Fluoreszenz-in-situ-Hybridisierung (FISH) handelt es sich um eine Technik, die es ermöglicht, DNA-Sequenzen auf Metaphase-Chromosomen oder in Interphase-Kernen in festen zytogenetischen Proben nachzuweisen. Bei dieser Technik kommen DNA-Sonden zum Einsatz, die ganze Chromosomen oder einzelne Sequenzen hybridisieren und als leistungsstarke Ergänzung zur zytogenetischen Analyse der G-Bänderung dienen. Diese Technik kann nun als wesentliches Untersuchungsinstrument bei der Chromosomenanalyse im pränatalen und hämatologischen Bereich sowie bei der Analyse von soliden Tumoren eingesetzt werden. Die Ziel-DNA steht nach Fixierung und Denaturierung für die Bindung an eine ähnlich denaturierte, fluoreszierend markierte DNA-Sonde zur Verfügung, die eine komplementäre Sequenz aufweist. Nach der Hybridisierung wird die ungebundene und unspezifisch gebundene DNA-Sonde

entfernt und zwecks Visualisierung eine Gegenfärbung der DNA vorgenommen. Mittels Fluoreszenzmikroskopie wird dann die hybridisierte Sonde im Zielmaterial visualisiert.


Informationen zur Sonde

Down-Syndrom (DS) ist eine autosomale Trisomie, die durch das Vorhandensein einer dritten (partiellen oder vollständigen) Kopie des Chromosoms 21 verursacht wird und durch eine variable geistige Behinderung, Muskelhypotonie und Gelenklaxität gekennzeichnet ist, die häufig mit einer charakteristischen und verschiedenen Anomalien Gesichtsdysmorphie gastrointestinalen, neurosensorischen oder endokrinen Defekten einhergehen^{1,2}. DS ist weltweit eine der häufigsten Ursachen für geistige Behinderungen. Diese Patienten sind ebenfalls mit verschiedenen gesundheitlichen Problemen konfrontiert, darunter Lern- und Gedächtnisstörungen, angeborene Herzfehler, Alzheimer, Leukämie, Krebs und Morbus Hirschsprung¹. DS besitzt eine hohe genetische Komplexität und eine hohe Variabilität des Phänotyps¹. In der 16. Schwangerschaftswoche beträgt die Häufigkeit von DS-Schwangerschaften bei Müttern im Alter von 20 Jahren 1 zu 1050, bei Müttern im Alter von 30 Jahren 1 zu 620 und bei Müttern im Alter von 40 Jahren 1 zu 703.

Das Patau-Syndrom (PS) bezeichnet eine Chromosomenanomalie, die durch das Vorhandensein eines zusätzlichen Chromosoms 13 verursacht wird und durch Fehlbildungen des Gehirns (Holoprosencephalie), Gesichtsdysmorphie, Augenanomalien, postaxiale Polydaktylie, viszerale Fehlbildungen (Kardiopathie) und schwere psychomotorische Retardierung gekennzeichnet ist². PS wird mit phänotypischer Holoprosencephalie und Fusionsanomalien der Mittellinie assoziiert, die auf eine mangelhafte Fusion des prächordalen Mesoderms im Embryonalstadium zurückzuführen sind⁴. In der 16. Schwangerschaftswoche beträgt die Häufigkeit von PS-Schwangerschaften bei Müttern im Alter von 20 Jahren 1 zu 11000, bei Müttern im Alter von 30 Jahren 1 zu 6500 und bei Müttern im Alter von 40 Jahren 1 zu 700³.

Spezifikation der Sonde

13 einzelne Sequenz, 13q14.2 grün 21 einzelne Sequenz, 21q22.1 orange

Die grüne Sonden-Mischung enthält eine 124kb-Sonde und eine 416kb-Sonde, das die Gene *ITM2B*, *RB1* und *RCBTB2* abdeckt. Die orange Sonden-Mischung deckt eine Region auf 21q22.1 vom *DYRK1A*-Gen bis zum *DSCR8*-Gen ab.

Bereitgestelltes Material

Sonde: 50 µl pro Ampulle (5 Tests) oder 100 µl pro Ampulle (10 Tests). Die Sonden werden in Hybridisierungslösung (< 65 % Formamid, < 20 mg Dextransulfat, < 10 % des 20x Salz-Natriumcitrat (SSC)) vorgemischt bereitgestellt und sind gebrauchsfertig.

Gegenfärbung: 150 µl pro Ampulle (15 Tests)

Für die Gegenfärbung wird DAPI Antifade ES verwendet (0,125 μ g/ml DAPI (4,6-Diamidino-2-Phenylindol) in Glycerol-basiertem Fixiermittel).

Warn- und Sicherheitshinweise

- Nur für den Einsatz in der In-vitro-Diagnostik. Nur für den professionellen Gebrauch im Labor.
- Sondenmixturen enthalten Formamid, dabei handelt es sich um ein Teratogen. Dämpfe nicht einatmen und Hautkontakt vermeiden. Gehen Sie vorsichtig vor; tragen Sie Handschuhe und einen Laborkittel.
- Gehen Sie beim Umgang mit DAPI vorsichtig vor; tragen Sie Handschuhe und einen Laborkittel.
- Verwenden Sie keine Ampulle/n, die auf irgendeine Weise beschädigt oder kompromittiert ist.
- Hinweise zur sicheren Entsorgung dieses Produkts finden Sie in den für Ihren Standort geltenden örtlichen Entsorgungsvorschriften sowie den Empfehlungen im Sicherheitsdatenblatt. Dies gilt auch für beschädigte Testkit-Inhalte.

- Entsorgen Sie alle gebrauchten Reagenzien und alle anderen kontaminierten Einwegmaterialien gemäß den Verfahren für infektiösen oder potenziell infektiösen Abfall. Es liegt in der Verantwortung jedes Labors, feste und flüssige Abfälle entsprechend ihrer Art und ihrem Gefährlichkeitsgrad zu handhaben und sie gemäß den geltenden Vorschriften zu behandeln und zu entsorgen (oder behandeln und entsorgen zu lassen).
- Die Nutzer müssen in der Lage sein, zwischen den Farben Rot, Blau und Grün zu unterscheiden.
- Die Nichteinhaltung des vorgegebenen Protokolls oder die Nichtnutzung der Reagenzien kann sich nachteilig auf die Leistung auswirken und zu falsch positiven/negativen Ergebnissen führen.
- Sondenflüssigkeit sollte nicht verdünnt oder mit anderen Sondenflüssigkeiten gemischt werden.
- 10. Werden während der Prä-Denaturierungsphase nicht 10 μ l der Sonde benutzt, so kann sich das nachteilig auf die Leistung auswirken und zu falsch positiven/negativen Ergebnissen führen.
- Alle Produkte sind vor dem Gebrauch zu validieren.
- 12. Es sollten interne Kontrollen an den nicht betroffenen Zellpopulationen der Testproben durchgeführt werden.

Temperaturdefinitionen

-20 °C / Gefroren / Im Gefrierschrank: -25 °C bis -15 °C 37 °C: +37 °C ± 1 °C +72 °C ± 1 °C 72 °C: +75 °C ± 1 °C 75 °C: Raumtemperatur (RT): +15 °C bis +25 °C

Lagerung und Handhabung

-15°C Das Kit ist bei Temperaturen zwischen -25°C und -15°C in einem Gefrierschrank aufzubewahren, bis das Ablaufdatum, das auf dem Etikett des Kits angegeben ist, erreicht wurde. Die

Sonde und die Ampullen mit der Gegenfärbung sind im Dunkeln zu lagern.

Die FISH-Sonde, DAPI-Antifade-ES-Gegenfärbelösung und Hybridisierungslösung bleiben während der Frost-Tau-Zyklen, die im regulären Gebrauch auftreten, stabil (dabei besteht ein Zyklus jeweils aus der Entnahme der Ampulle aus dem Gefrierschrank und dem Austausch der Ampulle im Gefrierschrank) – 5 Zyklen für die 50-µl-Ampulle der FISH-

Sonde (5 Tests), 10 Zyklen für die 100-µl-Ampulle der FISH-Sonde (10 Tests) und 15 Zyklen für die 150-µl-Ampulle der Gegenfärbelösung (15 Tests). Die Lichteinstrahlung sollte minimiert, und wenn möglich vermieden werden. Lagern Sie die Komponenten in dem mitgelieferten lichtdichten Behälter. Komponenten, die unter anderen als den auf dem Etikett angegebenen Bedingungen verwendet und gelagert werden, funktionieren möglicherweise nicht wie erwartet und können die Testergebnisse negativ beeinflussen. Es müssen alle Anstrengungen unternommen werden, um die Exposition gegenüber Licht-Temperaturschwankungen zu begrenzen.

Benötigte Geräte und Materialien, die nicht zum Lieferumfang gehören

Es müssen kalibrierte Geräte verwendet werden:

- Heizplatte (mit einer festen Platte und einer präzisen Temperaturregelung bis
- Kalibrierte Mikropipetten und Spitzen mit variablem Volumen von 1 µl 200 µl
- Wasserbad mit präziser Temperaturregelung bei 37 °C und 72 °C
- Mikrozentrifugenröhrchen (0,5 ml)
- Fluoreszenzmikroskop (bitte beachten Sie dazu den Abschnitt "Empfehlungen zum Fluoreszenzmikroskop")
- Phasenkontrastmikroskop
- Saubere Coplin-Gefäße aus Kunststoff, Keramik oder hitzebeständigem Glas
- Pinzette
- Kalibriertes pH-Messgerät (oder pH-Indikatorstreifen für die Messung von pH-Werten zwischen 6,5 – 8,0)
- Befeuchteter Behälter
- Immersionsöl für das Objektiv des Fluoreszenz-Mikroskops 11.
- Laborzentrifuge 12
- Objektträger 13.
- 24 x 24 mm Deckgläser 14.
- 15. Zeitmesser
- 37 °C Inkubator 16. 17.
- Kleber auf Gummibasis
- Vortexmischer 18.
- 19. Messzylinder
- Magnetrührer 20.
- Kalibriertes Thermometer

Optionale Ausrüstung, die nicht zum Lieferumfang gehört

1. Zytogenetische Trocknungskammer

Benötigte Reagenzien, die nicht zum Lieferumfang gehören

- 20x Kochsalz-Natriumcitrat-(SSC-)Lösung
- 100 % Ethanol
- Tween-20 3
- 1M Natriumhydroxid (NaOH) 4
- 1M Salzsäure (HCI) 5.
- Destilliertes Wasser

Empfehlungen zum Fluoreszenzmikroskop

Benutzen Sie eine 100 Watt Quecksilberlampe oder eine gleichwertige Lampe sowie 60/63x oder 100x Plan-Apochromate-Objektive für eine optimale Visualisierung. Die Fluorophore, die in diesem Sondenset verwendet werden, werden bei folgenden Wellenlängen angeregt und emittiert:

Fluorophor	Max. Erregung [nm]	Max. Aussendung [nm]
Grün	495	521
Orange	551	572

Achten Sie auf eine angemessene Anregung und stellen Sie sicher, dass das Mikroskop mit Emissionsfiltern ausgestattet ist, welche die oben aufgeführten Wellenlängen abdecken. Der Dreifach-Bandfilter DAPI/FITC/TRITC ist optimal für die gleichzeitige Betrachtung der grünen und orangen Fluorophore sowie der Gegenfärbung. Der Dreifach-Bandfilter DAPI/FITC/Texas Red kann auch verwendet werden, um beide Fluorophore und DAPI gleichzeitig zu betrachten.

Überprüfen Sie das Fluoreszenzmikroskop vor dem Gebrauch, um sich von seiner einwandfreien Funktion zu überzeugen. Verwenden Sie Immersionsöl, das für die Fluoreszenzmikroskopie geeignet ist und aufgrund seiner Formulierung eine geringe Autofluoreszenz aufweist. Mischen Sie DAPI-Antifade nicht mit Mikroskop-Immersionsöl, da dadurch die Signale verdeckt werden können. Befolgen Sie hinsichtlich der Lebensdauer der Lampe und der Anwendungsdauer der Filter die Empfehlungen der Hersteller.

Vorbereitung der Probe

Das Kit ist für die Verwendung an mit Carnoy'scher Lösung (3:1 Methanol/Essigsäure) fixierten Zellen aus Fruchtwasserproben für die Auszählung der Chromosomen 13 und 21 bei Hochrisikoschwangerschaften mit Verdacht auf Down- oder Patau-Syndrom bestimmt, die gemäß den Richtlinien des Labors oder des Instituts vorbereitet werden. Die Entnahme von Fruchtwasserproben sollte gemäß den Richtlinien des Labors oder des Instituts durchgeführt werden. Proben, die blutig oder braun erscheinen, sollten nicht verwendet werden, da sie möglicherweise mütterliches Blut enthalten und zu falschen Ergebnissen führen Bereiten Sie lufttrocknende Proben nach den zytogenetischen Standardverfahren auf Objektträgern vor. Das AGT Cytogenetics Laboratory Manual enthält Empfehlungen für die Sammlung, Kultivierung und Entnahme von Proben sowie die Präparation der Objektträger⁵.

Vorbereitung der Lösung Ethanollösungen

Verdünnen Sie 100 % Ethanol unter Berücksichtigung der folgenden Mischverhältnisse mit destilliertem Wasser und mischen Sie die Lösung gründlich

- 70 % Ethanol 7 Teile 100 % Ethanol auf 3 Teile destilliertes Wasser
- 85 % Ethanol 8,5 Teile 100 % Ethanol auf 1,5 Teile destilliertes Wasser Lagern Sie die Lösung bis zu 6 Monate bei Raumtemperatur in einem luftdichten Behälter.

2x SSC Lösung

Verdünnen Sie 1 Teil 20x SSC Lösung mit 9 Teilen destilliertem Wasser und mischen Sie die Lösung gründlich durch. Messen Sie den pH-Wert und korrigieren Sie diesen nach Bedarf mit NaOH oder HCl auf einen pH-Wert von 7,0. Lagern Sie die Lösung bis zu 4 Wochen bei Raumtemperatur in einem luftdichten Behälter.

0,4x SSC Lösung Verdünnen Sie 1 Teil 20x SSC Lösung mit 49 Teilen destilliertem Wasser und mischen Sie die Lösung gründlich durch. Messen Sie den pH-Wert und korrigieren Sie diesen nach Bedarf mit NaOH oder HCl auf einen pH-Wert von 7,0. Lagern Sie die Lösung bis zu 4 Wochen bei Raumtemperatur in einem luftdichten Behälter.

2x SSC, 0,05 % Tween-20-Lösung

Verdünnen Sie 1 Teil 20x SSC Lösung mit 9 Teilen destilliertem Wasser. Fügen Sie 5 µl Tween-20 auf 10 ml hinzu und mischen Sie die Lösung gründlich durch. Messen Sie den pH-Wert und korrigieren Sie diesen nach Bedarf mit NaOH oder HCl auf einen pH-Wert von 7,0. Lagern Sie die Lösung bis zu 4 Wochen bei Raumtemperatur in einem luftdichten Behälter.

Empfohlene Vorbehandlung der Objektträger⁵.

- Legen Sie den Objektträger, der aus 3:1 Methanol/Essigsäure-fixierten Zellen aus Fruchtwasserproben hergestellt wurde, 1 Stunde lang bei 37 °C in 2xSSC.
- Legen Sie den Objektträger für 13 Minuten bei 37 °C in eine frisch hergestellte Pepsin-Arbeitslösung (5 mg Pepsin auf 100 ml 0,01 M Hcl).
- Tauchen Sie den Objektträger bei RT für 5 Minuten in phosphatgepufferte Kochsalzlösung (PBS) ein.
- Tauchen Sie den Objektträger in eine Nachfixierungslösung (0,95 %Formaldehyd: 1,0 ml 37 % Formaldehyd, 0,18 g MgCl₂ und 39,0 ml PBS) bei RT für 5 Minuten ein.
- Tauchen Sie den Objektträger 5 Minuten lang bei RT in PBS ein.
- Tauchen Sie den Objektträger bei RT in 70 %iges Ethanol ein. Lassen Sie den Objektträger 2 Minuten lang in der Ethanolspülung stehen.
- Nehmen Sie den Objektträger aus dem 70 %igen Ethanol. Wiederholen Sie Schritt 6 mit 80 %igem Ethanol und dann mit 100 %igem Ethanol.
- 8 Lassen Sie Objektträger an der Luft trocknen.

FISH-Protokoll

(Hinweis: Stellen Sie sicher, dass die Exposition der Sonde und der Gegenfärbelösung gegenüber den Laborlampen stets begrenzt ist.)

Vorbereitung des Objektträgers (diesen Schritt überspringen, wenn der Objektträger gemäß dem oben genannten Protokoll vorbereitet wurde)

Leuchten Sie die Zellprobe auf einem Objektträger aus Glas aus. Lassen Sie Objektträger trocknen. (Optional, bei Verwendung einer zytogenetischen Trocknungskammer: Die Kammer sollte bei etwa 25 °C und 50 % Luftfeuchtigkeit betrieben werden, um eine optimale Ausleuchtung DS551/CE-de v003.00/2025-09-09 (A001 v4 / A002 v3)

- der Zellproben sicherzustellen. Steht keine zytogenetische Trocknungskammer zur Verfügung, so kann alternativ auch ein Dunstabzug verwendet werden.)
- Tauchen Sie den Objektträger 2 Minuten lang bei Raumtemperatur (RT) in 2x SSC, ohne die Lösung dabei zu schütteln.
- In einer Ethanolserie (70 %, 85 % und 100 %) jeweils 2 Minuten bei RT dehydrieren.
- 4. Lassen Sie den Objektträger trocknen.

Prä-Denaturierung

- Entnehmen Sie die Sonde aus dem Gefrierschrank und erwärmen Sie diese auf RT. Die Röhrchen vor dem Gebrauch kurz zentrifugieren.
- Stellen Sie sicher, dass die Sondenlösung mit einer Pipette gleichmäßig durchgemischt wird.
- Platzieren Sie die Sonde und den Objektträger mit der Probe zum Vorwärmen 5 Minuten lang auf einer Heizplatte mit einer Temperatur von 37 °C (+/- 1 °C).

Denaturierung

 Denaturieren Sie die Probe und die Sonde gleichzeitig, indem Sie den Objektträger 2 Minuten lang auf einer Heizplatte auf eine Temperatur von 75 °C (+/- 1 °C) erhitzen.

Hybridisierung

11. Platzieren Sie den Objektträger über Nacht in einem feuchten, luftdichten Behälter bei einer Temperatur von 37 °C (+/- 1 °C).

Spülgänge nach der Hybridisierung

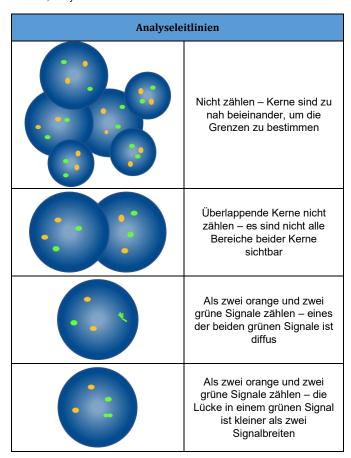
- Entnehmen Sie die DAPI-Lösung aus dem Gefrierschrank und erwärmen Sie diese auf RT.
- Nehmen Sie das Deckglas ab und entfernen Sie vorsichtig etwaige Kleberrückstände.
- Tauchen Sie den Objektträger 2 Minuten lang bei einer Temperatur von 72 °C (+/- 1 °C) ohne Schütteln in 0,4x SSC (pH 7,0) ein.
- Den Objektträger abtropfen lassen und bei RT (pH 7,0) 30 Sekunden lang ohne Schütteln in 2x SSC, 0,05 % Tween-20 eintauchen.
- Den Objektträger trocknen lassen und 10 μl DAPI Antifade auf jede Probe aufbringen.
- Ein Deckglas aufsetzen, etwaige Blasen entfernen und 10 Minuten abwarten, während sich die Farbe im Dunkeln entwickelt.
- Unter einem Fluoreszenzmikroskop betrachten (bitte beachten Sie den Abschnitt Empfehlungen zum Fluoreszenzmikroskop).

Empfehlungen zur Vorgehensweise

- Die Ofenbehandlung oder Aushärtung von Objektträgern kann die Signalfluoreszenz reduzieren.
- Die Hybridisierungsbedingungen k\u00f6nnen beeintr\u00e4chtigt werden, wenn andere Reagenzien als die verwendet werden, die durch Cytocell Ltd. zur Verf\u00fcgung gestellt oder empfohlen werden.
- Verwenden Sie ein geeichtes Thermometer, um die Temperatur von Lösungen, Wasserbädern und Inkubatoren zu messen, da diese für eine optimale Produktleistung eine entscheidende Rolle spielen.
- 4. Die Waschkonzentrationen, der pH-Wert und die Temperaturen sind wichtig, da eine geringe Stringenz zu einer unspezifischen Bindung der Sonde führen kann und eine zu hohe Stringenz ein fehlendes Signal verursachen kann.
- Eine unvollständige Denaturierung kann zu einem fehlenden Signal führen, eine übermäßige Denaturierung dagegen auch zu unspezifischer Bindung.
- Eine übermäßige Hybridisierung kann zu zusätzlichen oder unerwarteten Signalen führen.
- Anwender sollten das Protokoll für ihre eigenen Proben optimieren, bevor sie den Test für diagnostische Zwecke einsetzen.
- Suboptimale Bedingungen können zu einer unspezifischen Bindung führen, die fälschlicherweise als Sondensignal interpretiert werden kann.

Auswertung der Ergebnisse

Beurteilung der Objektträgerqualität


Der Objektträger sollte nicht analysiert werden, falls Folgendes zutrifft:

- Die Signale sind zu schwach für eine Analyse in Einzelfiltern um die Analyse fortzusetzen, sollten Signale hell, deutlich und leicht auswertbar sein.
- Es gibt eine große Anzahl von verklumpten/überlappenden Zellen, welche die Analyse stören.
- > 50 % der Zellen sind nicht hybridisiert.
- Es gibt einen Überschuss an fluoreszierenden Partikeln zwischen den Zellen und/oder einen fluoreszierenden Schleier, der die Signale stört – bei einem optimalen Objektträger sollte der Hintergrund dunkel oder schwarz und sauber aussehen.
- Die Zellkerngrenzen sind nicht eindeutig erkennbar und nicht intakt.

Analyseleitlinien

- Jede Probe sollte von zwei Analytikern analysiert und ausgewertet werden.
 Etwaige Unstimmigkeiten sind durch die Auswertung durch einen dritten Analytiker zu klären
- Jeder Analytiker muss über eine angemessene Qualifikation verfügen, die den anerkannten nationalen Standards entspricht.

- Jeder Analytiker sollte unabhängig voneinander eine ausreichende Anzahl von Kernen aus jeder Probe bewerten, so dass die kombinierte Bewertung der Analytiker die in den institutionellen, regionalen oder nationalen Leitlinien festgelegten Mindestkriterien erfüllt. Der erste Analytiker sollte mit seiner Analyse auf der linken Seite des Objektträgers beginnen, der zweite Analytiker auf der rechten Seite.
- Jeder Analytiker sollte seine Ergebnisse in separaten Tabellen dokumentieren.
- Analysieren Sie nur intakte Kerne, keine überlappenden oder überfüllten Kerne und keine Kerne, die mit zytoplasmatischen Ablagerungen bedeckt sind oder einen hohen Autofluoreszenzgrad aufweisen.
- Meiden Sie Bereiche, in denen übermäßige zytoplasmatische Ablagerungen oder unspezifische Hybridisierung vorhanden sind.
- Die Signalintensität kann variieren, das gilt auch für einzelne Kerne.
 Verwenden Sie in solchen Fällen Einzelfilter und/oder passen Sie die Bildebene entsprechend an.
- Unter suboptimalen Bedingungen können Signale diffus erscheinen. Wenn sich zwei Signale der gleichen Farbe berühren oder der Abstand zwischen ihnen nicht größer als zwei Signalbreiten ist, oder wenn ein schwacher Strang vorhanden ist, der die beiden Signale verbindet, zählen diese beiden Signale jeweils als ein Signal.
- Wenn bei der Analyse von zweifarbigen Break-apart-Sonden ein Abstand zwischen dem roten und grünen Signal nicht größer als 2 Signalbreiten ist, so wird dies als nicht neu angeordnetes/fusioniertes Signal gedeutet.
- Wenn bei der Analyse von dreifarbigen Break-apart-Sonden ein Abstand zwischen den 3 Signalen auftritt (rot, grün, blau), der nicht größer ist als 2 Signalbreiten, so wird dies als nicht neu angeordnetes/fusioniertes Signal gedeutet.
- Falls Sie Zweifel haben, ob eine Zelle für die Analyse in Frage kommt oder nicht, analysieren Sie diese Zelle nicht.

Erwartetes normales Signalmuster

In einer normalen Zelle werden zwei grüne und zwei orange Signale (2G20) erwartet.

Erwartete(s) abnormale(s) Signalmuster

In einer Zelle mit Trisomie 13 werden drei grüne und zwei orange Signale (3G2O) erwartet.

In einer Zelle mit Trisomie 21 werden zwei grüne und drei orange Signale (2G3O) erwartet

Andere Signalmuster sind bei aneuploiden/unbalancierten Proben möglich.

Bekannte relevante Interferenzen / Störsubstanzen

Keine bekannten relevanten Interferenzen / Störsubstanzen.

Bekannte Kreuzreaktionen

Keine bekannten Kreuzreaktionen.

Meldung schwerer Störungen

Bei einem Patienten, einem Benutzer oder einer Drittpartei in der Europäischen Union und in Ländern mit identischen regulatorischen Bestimmungen (EU-Verordnung 2017/746 zu Medizinprodukten für die In-vitro-Diagnostik) gilt: Falls es während der Verwendungen dieses Produkts oder aufgrund der Verwendung dieses Produkts zu einer schweren Störung kommt, dann melden Sie diese bitte dem Hersteller und der in Ihrem Land zuständigen Behörde.

Bei schweren Störungen in anderen Ländern gilt: Melden Sie die Störung bitte dem Hersteller und, sofern zutreffend, der in dem Land zuständigen Behörde.

Ansprechpartner des Herstellers für Vigilanz: vigilance@ogt.com

Eine Liste der für Vigilanz zuständigen Ansprechpartner für die Behörden der EU-Mitaliedsländer finden Sie unter:

https://health.ec.europa.eu/medical-devices-sector/new-regulations/contacts_en

Spezifische Leistungsmerkmale Analytische Spezifität

Analytische Spezifität bezeichnet den Prozentsatz der Signale, die im richtigen Locus und an keinem anderen Ort hybridisiert wurden. Es wurden vier chromosomale Loci in jeder der 20 Metaphasezellen aus fünf Proben analysiert, das ergibt 400 Datenpunkte. Die Position jeder hybridisierten Sonde wurde abgebildet und die Anzahl der FISH-Signale der Metaphase-Chromosomen, die am richtigen Ort hybridisiert wurden, wurde aufgezeichnet.

Die analytische Spezifität jeder Sonde im Kit wurde berechnet, indem die Anzahl der FISH-Signale der Metaphase-Chromosomen, die am richtigen Locus hybridisiert wurden, durch die Gesamtzahl der hybridisierten FISH-Signale der Metaphase-Chromosomen dividiert wurde. Dieses Ergebnis wurde mit 100 multipliziert, als Prozentsatz ausgedrückt und mit einem Konfidenzintervall von 95 % angegeben.

Tabelle 1 Analytische Spezifität für das Prenatal 13 and 21 Enumeration Probe Kit

Ziel	Anzahl der hybridisierten Metaphase- Chromosomen	Anzahl der korrekt hybridisier- ten Loci	Analyti- sche Spezifität	95 % Konfidenzintervall
21q22.1	200	200	100 %	98,12 % – 100 %
13q14.2	200	200	100 %	98,12 % – 100 %

Analytische Sensitivität

Die analytische Sensitivität ist der Prozentsatz der auswertbaren Zellen in der Interphase, die das erwartete normale Signalmuster aufweisen. Für jede von 25 fixierten Zellsuspensionen aus Fruchtwasserproben von karyotypisch normalen Männern oder Frauen, bei denen durch FISH oder Karyotyp ein normales Komplement der Chromosomen 13 und 21 bestätigt wurde, wurden mindestens 50 Interphase-Zellen analysiert, so dass für jeden Probentyp mindestens 1250 Kerne ausgewertet wurden. Die Sensitivitätsdaten wurden basierend auf dem Prozentsatz der Zellen analysiert, die ein normales erwartetes Signalmuster aufweisen, und als Prozentsatz mit einem Konfidenzintervall von 95 % ausgedrückt.

Tabelle 2 Analytische Sensitivität für das Prenatal 13 and 21 Enumeration Probe Kit

Probentyp	Sensitivitätskriterien	Sensitivitätsergebnis
Fruchtwasser	> 95 %	96,24 % (94,84 – 97,64 %)

Charakterisierung der normalen Cut-off-Werte

Der normale Cut-off-Wert wird definiert als der Prozentsatz der Zellen, die ein falsch positives Signalmuster aufweisen, bei dem eine Person als gesund angesehen wird und das nicht mit einer klinischen Diagnose übereinstimmt. Für jede von 25 fixierten Zellsuspensionen aus Fruchtwasserproben von karyotypisch normalen Männern oder Frauen, bei denen durch FISH oder Karyotyp ein normales Komplement der Chromosomen 13 und 21 bestätigt wurde, wurden mindestens 50 Interphase-Zellen analysiert, so dass für jeden Probentyp mindestens 1250 Kerne ausgewertet wurden.

Der Cut-off-Wert wurde mit der Funktion β-inverse (BETAINV) in MS Excel ermittelt. Er wurde berechnet als Prozentsatz der Zellen in der Interphase, die ein falsch positives Signalmuster unter Verwendung der oberen Grenze eines einseitigen Konfidenzintervalls von 95 % der Binomialverteilung in einer normalen Patientenprobe aufweisen.

Tabelle 3 Charakterisierung der normalen Cut-off-Werte des Prenatal 13 and 21 Enumeration Probe Kit

Probentyp	Cut-off-Ergebnis
Fruchtwasser	8,97 %

Labore müssen die Cut-off-Werte anhand eigener Daten und in Übereinstimmung mit institutionellen, regionalen oder fachlichen Best-Practice-Leitlinien, die in ihrem diagnostischen Umfeld gelten könnten, überprüfen^{6,7}

Die Genauigkeit dieses Produkts wurde in Bezug auf die Genauigkeit innerhalb eines Tages (Probe zu Probe), an verschiedenen Tagen (Tag zu Tag) und innerhalb einer Charge an einem einzigen Standort (Charge zu Charge) gemessen.

Drei (3) Proben wurden verwendet, um die Präzision dieses Produkts zu bewerten: eine normale Fruchtwasserprobe, eine schwach positive Trisomie 13 Fruchtwasserprobe (3G2O) und eine schwach positive Trisomie 21 Fruchtwasserprobe (2G3O). Die schwach positiven Fruchtwasserproben wurden hergestellt, indem ein Teil der normalen Fruchtwasserprobe verwendet und mit einer bekannt positiven Fruchtwasserprobe gespiket wurde. Dies dient dazu, schwach positive Proben im Bereich des 2 – 4-fachen Cut-offs zu erzeugen.

Um die Genauigkeit innerhalb eines Tages und an verschiedenen Tagen zu ermitteln, wurden die Proben an 10 nicht aufeinanderfolgenden Tagen ausgewertet, und um die Genauigkeit von Charge zu Charge zu bestimmen, wurden drei (3) Produktchargen an drei (3) Duplikaten derselben Proben bewertet. Die Ergebnisse wurden als allgemeine Übereinstimmung mit der prognostizierten negativen Klasse (für die negativen Proben) präsentiert.

Tabelle 4 Reproduzierbarkeit und Genauigkeit für das Prenatal 13 and 21 Enumeration Probe Kit

Variable	Probentyp	Übereinstimmung
Genauigkeit innerhalb eines Tages und an verschiedenen Tagen	Fruchtwasser negativ	100 %
	Fruchtwasser schwach positiv Trisomie 13 (3G2O)	100 %
	Fruchtwasser schwach positiv Trisomie 21 (2G3O)	96,7 %
	Fruchtwasser negativ	88,9 %
Charge zu Charge eines Tages und an verschiedenen Tagen	Fruchtwasser schwach positiv Trisomie 13 (3G2O)	100 %
	Fruchtwasser schwach positiv Trisomie 21 (2G3O)	100 %

Klinische Leistung

Um sicherzustellen, dass das Produkt die vorgesehenen Neuanordnungen erkennt, wurde die klinische Leistung in drei Studien an repräsentativen Proben der für das Produkt vorgesehenen Zielpopulation ermittelt: in 3:1 Methanol/Essigsäure pränatalen Restmaterial aus Fruchtwasserproben. Stichprobenumfang für die Studie betrug 172 Proben, mit einer Population von 15 Trisomie 13 positiven und 157 Trisomie 13 negativen Proben, und insgesamt 109 Trisomie 21 positiven und 63 Trisomie 21 negativen Proben. Die Ergebnisse wurden mit dem bekannten Status der Probe verglichen. Die Sonde identifizierte den Status der Proben in allen Fällen korrekt.

Die Ergebnisse dieser Tests wurden analysiert, um mit einem eindimensionalen Ansatz klinische Sensitivität, klinische Spezifität und die Werte der Falsch-Positiv-Rate (FPR) für positive Signale zu bestimmen.

Tabelle 5 Klinische Leistung für das Prenatal 13 and 21 Enumeration Probe Kit

Variable	Ergebnis
Klinische Sensitivität (Richtig-Positiv-Rate, TPR)	100,0 %
Klinische Spezifität (Richtig-Negativ-Rate, TNR)	100,0 %
Falsch-Positiv-Rate (FPR) = 1 – Spezifität	0,00 %

Zusammenfassung von Sicherheit und Leistung (SSP)

Die SSP wird der Öffentlichkeit über die europäische Datenbank für Medizinprodukte (Eudamed) zugänglich gemacht, wo sie mit der Basis-UDI-DI verknüpft ist.

Eudamed URL: https://ec.europa.eu/tools/eudamed

Basis-UDI-DI: 50558449LPA003GL

Wenn Eudamed nicht voll funktionsfähig ist, wird der SSP der Öffentlichkeit auf Anfrage per E-Mail an SSP@ogt.com zur Verfügung gestellt.

Zusätzliche Informationen

Für weitere Produktinformationen wenden Sie sich bitte an den technischen Support von CytoCell.

Tel.: +44 (0)1223 294048
E-Mail: techsupport@cytocell.com
Website: www.ogt.com

Referenzen

- Asim A, Kumar A et al. Down syndrome an insight of the Disease. Journal of Biomedical Science, 2015;22(41):1-9
- 2. https://www.orpha.net/
- Gardner, R. and Amor, D. Gardner and Sutherland's Chromosome Abnormalities and Genetic Counseling. 5th ed: OUP USA, 2018
- Noriega MA, Siddik AB. s.l. Trisomy 13: StatPearls[Internet], Treasure Island[FL], updated 2021.
- 5. Arsham, MS., Barch, MJ. and Lawce HJ. (eds.) (2017) *The AGT Cytogenetics Laboratory Manual*. New Jersey: John Wiley & Sons Inc.
- Mascarello JT, Hirsch B, Kearney HM, et al. Section E9 of the American College of Medical Genetics technical standards and guidelines: fluorescence in situ hybridization. Genet Med. 2011;13(7):667-675.
- Wiktor AE, Dyke DLV, Stupca PJ, Ketterling RP, Thorland EC, Shearer BM, Fink SR, Stockero KJ, Majorowicz JR, Dewald GW. Preclinical validation of fluorescence in situ hybridization assays for clinical practice. Genetics in Medicine. 2006;8(1):16–23.

Symbolerklärung

EN ISO 15223-1:2021 - "Medizinprodukte - Symbole, die in Verbindung mit vom Hersteller bereitzustellenden Informationen zu verwenden sind - Teil 1: Allgemeine Anforderungen" (© Internationale Organisation für Normung)		
Symbol	Titel	Referenznummer(n)
***	de: Hersteller	5.1.1
EC REP	de: Bevollmächtigter in der Europäischen Gemeinschaft/Europäischen Union	5.1.2
	de: Verfallsdatum	5.1.4
LOT	de: Chargencode	5.1.5
REF	de: Katalognummer	5.1.6
淤	de: Vor Sonnenlicht schützen	5.3.2
1	de: Temperaturgrenze	5.3.7
[]i	de: Gebrauchsanweisung beachten	5.4.3
ogt.com/IFU	de: Elektronische Gebrauchsanweisung beachten	5.4.3
\triangle	de: Vorsicht	5.4.4
IVD	de: Medizinprodukt für die <i>In-vitro-</i> Diagnostik	5.5.1
Σ	de: Menge reicht für <n> Tests</n>	5.5.5
UDI	de: Eindeutige Gerätekennung	5.7.10
EDMA-Symbole für IVD-Reagenzien und Komponenten, Revision Oktober 2009		
Symbol	Titel	Referenznummer(n)
CONT	de: Inhalt (oder enthält)	n. z.

Patente und Warenzeichen

Cytocell ist eine eingetragene Marke von Cytocell Limited.

Cytocell Limited

Oxford Gene Technology 418 Cambridge Science Park Milton Road CAMBRIDGE CB4 0PZ Großbritannien

Tel.: +44 (0)1223 294048 E-Mail: probes@cytocell.com Web: www.ogt.com

Sysmex Europe SE

Deelböge 19 D 22297 Hamburg DEUTSCHLAND

Web: www.sysmex-europe.com

Versionshistorie der Gebrauchsanweisung

V001.00 2023-01-11: Neue Gebrauchsanweisung für EU-Verordnung 2017/746 V002 2025-08-29: Entfernung der UKCA-Kennzeichnung V003 2025-09-09: Aktualisierung der Adresse des in der EU autorisierten Vertreters. Entfernung der Telefonnummer des in der EU autorisierten Vertreters. Entfernung der OGT-Faxnummer.