

Gebrauchsanweisung

REF: LPH 011-S/LPH 011

ATM Deletion Probe

NUR FÜR DEN PROFESSIONELLEN GEBRAUCH

Weitere Informationen und andere Sprachen erhältlich unter www.ogt.com

Einschränkungen

Dieses Produkt wurde entwickelt, um Genomverluste zu erkennen, die größer sind als die Region, die vom roten Klon in diesem Sondenset abgedeckt wird, diese umfasst auch die Region ATM. Genomverluste außerhalb die ser Region oder Teilverluste dieser Region können mit diesem Produkt nicht erkannt werden. Dieser Test ist nicht für die eigenständige Diagnostik, Pränataldiagnostik, das populationsbasierte Screening, stationäre Untersuchungen oder Selbsttests geeignet. Dieses Produkt ist nur für den professionellen Gebrauch im Labor bestimmt. Alle Ergebnisse sind durch entsprechend qualifiziertes Personal zu interpretieren, dabei sind alle übrigen relevanten Testergebnisse zu berücksichtigen.

Dieses Produkt wurde nicht für die Verwendung mit anderen Probentypen od er Krankheitstypen als denjenigen validiert, die unter "Verwendungszweck"

Die Meldung und Auslegung der FISH-Ergebnisse sollte den professionellen Praxisstandards entsprechen und weitere klinische und diagnostische Informationen berücksichtigen. Dieses Kit ist als Ergänzung zu anderen diagnostischen Labortests gedacht und es sollten nicht allein aufgrund des FISH-Ergebnisses therapeutische Maßnahmen eingeleitet werden.

Die Nichteinhaltung des Protokolls kann sich nachteilig auf die Leistung auswirken und zu falsch positiven/negativen Ergebnissen führen.

Dieses Kit wurde nicht für Zwecke außerhalb des angegebenen Verwendungszwecks zugelassen.

Verwendungszweck

Die CytoCell ATM Deletion Probe ist ein hochwertiger, nicht automatisierter Fluoreszenz-*in-situ-*Hybridisierungstest (FISH) zum Nachweis chromosomalen Deletionen in der Region 11q22.3 auf Chromosom 11 in mit Carnoy'scher Lösung (3:1 Methanol/Essigsäure) fixierten, hämatologisch gewonnenen Zellsuspensionen von Patienten mit bestätigter oder vermuteter chronischer lymphatischer Leukämie (CLL).

Indikationen

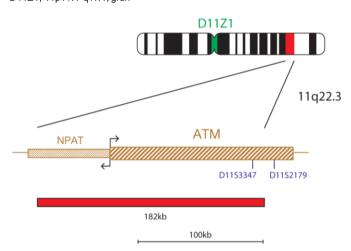
Dieses Produkt wurde als Ergänzung zu anderen klinischen und histopathologischen Tests in anerkannten diagnostischen und klinischen Versorgungspfaden konzipiert, bei denen die Kenntnis des ATM Deletionsstat us für das klinische Management relevant wäre.

Grundprinzipien des Tests

Bei der Fluoreszenz-in-situ-Hybridisierung (FISH) handelt es sich um eine Technik, die es ermöglicht, DNA-Sequenzen auf Metaphase-Chromosomen oder in Interphase-Kernen in festen zytogenetischen Proben nachzuweisen. Bei dieser Technik kommen DNA-Sonden zum Einsatz, die ganze Chromosomen oder einzelne, einzigartige Sequenzen hybridisieren und als leistungsstarke Ergänzung zur zytogenetischen Analyse der G-Bänderung dienen. Diese Technik kann nun als wesentliches Untersuchungsinstrument bei der Chromosomenanalyse im pränatalen und hämatologischen Bereich sowie bei der Analyse von soliden Tumoren eingesetzt werden. Die Ziel-DNA steht nach Fixierung und Denaturierung für die Bindung an eine ähnlich denaturierte, fluoreszierend markierte DNA-Sonde zur Verfügung, die eine komplementäre Sequenz aufweist. Nach der Hybridisierung wird die ungebundene und unspezifisch gebundene DNA-Sonde entfernt und zwecks Visualisierung eine Gegenfärbung der DNA

vorgenommen. Mittels Fluoreszenzmikroskopie wird dann die hybridisierte Sonde im Zielmaterial visualisiert.

Informationen zur Sonde


Das Proteinkinase-ATM-Gen (ATM Serin/Threoninkinase) an 11q22.3 ist bei chronischer lymphatischer B-Zell Leukämie (CLL) häufig deletiert. ATM ist ein wichtiges Checkpoint-Gen, das in das Management von Zellschädigungen involviert ist. Seine Funktion besteht darin, das Ausmaß der DNA-Schäden in der Zelle zu beurteilen und zu versuchen, diese durch Phosphorylierung von Schlüsselsubstraten zu reparieren, die in die DNA-Schadensantwort involviert

B-CLL ist die häufigste Leukämie bei Erwachsenen, der Verlauf kann von indolent bis schnell fortschreitend variieren. Aufgrund der geringen mitotischen in vitro Aktivität der leukämischen Zellen werden klonale Chromosomenanomalien in 40- $50~\%^2$ der Fälle mittels konventioneller zytogenetischer Diagnos tik mit B-ZeII-Mitogenen nachgewiesen, während die FISH-Analyse bei etwa 80 $\%^2$ der B-C LL Chromosomenaberrationen nachweist. Die Untersuchung auf ATM - und/oder TP53-Deletionen ist entscheidend, um informierte Therapieentscheidungen für B-CLL-Patienten zu ermöglichen, da TP53- und ATM- Deletionen bei dieser Erkrankung auf eine schlechtere Prognose schließen lassen⁴; daher hat sich der Einsatz von FISH als wirksames Instrument erwiesen, und zwar sowohl bei der Diagnose als auch beim Management von Patienten mit B-CLL^{2,3,4}.

Die Analyse der ATM/TP53-Interaktion bei B-CLL hat gezeigt, dass TP53 und ATM eine wichtige Rolle bei der Proliferation von Lymphdrüsenkrebs spielen¹. Es hat sich gezeigt, dass ATM die Phosphorylierung von TP53 verstärkt, falls der Schaden so groß ist, dass die Zelle durch Apoptose (die durch TP53 vermittelt wird) zerstört werden muss. Durch die ATM-Deletion wird diese Checkpoint-Aktivität und somit die Aktivierung von TP53 unterbunden. Daher erfolgen bei Zellschäden keine Reparatur- oder Apoptose-Versuche mehr, obwohl TP53 vorhanden ist. In Abwesenheit von ATM läuft die Proliferation von beschädigten Zellen weiter⁵

Spezifikation der Sonde

ATM, 11q22.3, rot D11Z1, 11p11.1-q11.1, grün

Die rot markierte 182kb ATM-Sonde deckt das telomerische Ende des NPAT-Gens ab und das centromerische Ende des ATM-Gens befindet sich knapp hinter dem D11S3347-Marker. Der Sondenmix enthält auch eine grün markierte Kontrollsonde für das Centromer 11 (D11Z1).

Bereitgestelltes Material

Sonde: 50 µl pro Ampulle (5 Tests) oder 100 µl pro Ampulle (10 Tests) Die Sonden werden in Hybridisierungslösung (Formamid, Dextran sulfat, Salz-Natriumcitrat (SSC)) vorgemischt bereitgestellt und sind gebrauchsfertig.

 $\label{eq:Gegenfarbung: 150 multiple} \textbf{Gegenfarbung: 150 multiple (15 Tests)} \\ \textbf{Für die Gegenfarbung wird DAPI Antifade verwendet (ES: 0,125 multiple (14,6-14))} \\ \textbf{Für die Gegenfarbung wird DAPI (4,6-14)} \\ \textbf{Für die Gegenfarbung: 150 multiple (15 Tests))} \\ \textbf{Gegenfarbung: 150 multiple$ diamidin-2-phenylindol)).

Warn- und Sicherheitshinweise

- Nur für den Einsatz in der in-vitro Diagnostik. Nur für den professionellen Gebrauch.
- 2. Tragen Sie Handschuhe, wenn Sie mit DNA-Sonden und DAPI-Gegenfärbung hantieren.
- Sondenmixturen enthalten Formamid, dabei handelt es sich um ein Teratogen, Dämpfenicht einatmen und Hautkontakt vermeiden, Gehen Sie vorsichtig vor; tragen Sie Handschuhe und einen Laborkittel.
- DAPI ist ein potentielles Karzinogen. Gehen Sie vorsichtig vor; tragen Sie Handschuhe und einen Laborkittel.
- Entsorgen Sie alle Gefahrenstoffe gemäß den Leitlinien, die in Ihrer Einrichtung für die Schadstoffentsorgung gelten.
- Die Nutzer müssen in der Lage sein, zwischen den Farben Rot, Blau und Grün zu unterscheiden.
- Die Nichteinhaltung des vorgegebenen Protokolls oder die Nichtnutzung der Reagenzien kann sich nachteilig auf die Leistung auswirken und zu falsch positiven/negativen Ergebnissen führen.
- Die Sondenflüssigkeit sollte nicht verdünnt oder mit anderen Sondenflüssigkeiten gemischt werden.

DS074/CE-de v011.00/2020-12-01 (H006 v4)

Werden während der Prä-Denaturierungsphase nicht 10µl der Sonde benutzt, so kann sich das nachteilig auf die Leistung auswirken und zu falsch positiven/negativen Ergebnissen führen.

Lagerung und Handhabung

Das Kit ist bei Temperaturen zwischen -25 °C und -15 °C in einem Gefrierschrank aufzubewahren, bis das Ablauf dat um, das auf dem Etikett des Kits angegeben ist, erreicht wurde. Die Sonde und die Ampullen mit der Gegenfärbung sind im Dunkeln zu lagern.

Die Sonde bleibt während der Frost-Tau-Zyklen, die im regulären Gebrauch auftreten, stabil (dabei besteht ein Zyklus jeweils aus der Entnahme der Sonde aus dem Gefrierschrank und dem Austausch der Sonde im Gefrierschrank) und ist bis zu 48 Stunden lang lichtbeständig, nachdem sie kontinuierlichen Lichtverhältnissen ausgesetzt wurde. Es müssen alle Anstrengungen unternommen werden, um die Exposition gegenüber Licht-und Temperaturschwankungen zu begrenzen.

Benötigte Geräte und Materialien, die nicht zum Lieferumfang gehören

Es müssen kalibrierte Geräte verwendet werden:

- Heizplatte (mit einer festen Platte und einer präzisen Temperaturregelung bis 80 °C)
- Kalibrierte Mikropipetten und Spitzen mit variablem Volumen von 1 µl -200 ul
- Wasserbad mit präziser Temperaturregelung bei 37 °C und 72 °C
- Mikrozentrifugenröhrchen (0,5 ml) Fluoreszenzmikroskop (bitte beachten Sie dazu den Abschnitt "Empfehlungen zum Fluoreszenzmikroskop")
- Phasenkontrastmikroskop
- Saubere Coplin-Gefäße aus Kunststoff, Keramik oder hit zebest ändigem 7. Glas
- Pinzette
- Kalibriertes pH-Messgerät (oder pH-Indikatorstreifen für die Messung von 9. pH-Werten zwischen 6,5–8,0)
- . Befeuchteter Behälter
- Immersionsöl für das Objektiv des Fluoreszenz-Mikroskops
- Laborzentrifuge 12.
- Objektträger 13.
- 24 x 24 mm Deckgläser 14.
- Zeitmesser 15
- 37 °C Inkubator 16.
- Kleber auf Gummibasis
- 17
- Vortexmischer 18. Messzylinder 19
- Magnetrührer 20.
- Kalibriertes Thermometer

Optionale Ausrüstung, die nicht zum Lieferumfang gehört

1. Zytogenetische Trocknungskammer

Benötigte Reagenzien, die nicht zum Lieferumfang gehören 1. 20x Kochsalz-Natrumcitrat (SSC)-Lösung

- 100 % Ethanol 2
- 3. Tween-20
- 1M Natriumhydroxid (NaOH)
- 1M Salzsäure (HCI)
- Destilliertes Wasser

Empfehlungen zum Fluoreszenzmikroskop

Benutzen Sie eine 100 Watt Quecksiberlampe oder eine gleichwertige Lampe sowie 60/63x oder 100x Plan-Apochromate als Objektive für eine optimale Visualisierung. Die Fluorophore, die in diesem Sondenset verwendet werden, werden bei folgenden Wellenlängen angeregt und emittiert:

Fluorophor	Max. Erregung [nm]	Max. Aussendung [nm]
Grün	495	521
Rot	596	615

Achten Sie auf eine angemessene Anregung und stellen Sie sicher, dass das Mikroskop mit Emissionsfiltern ausgestattet ist, welche die oben auf geführt en Wellenlängen abdecken. Verwenden Sie einen dreifachen Bandfilter DAPI/grünes Spektrum/rotes Spektrum oder einen zweifachen Bandfilter grünes Spektrum/rotes Spektrum, um eine optimale gleichzeitige Visualisierung der grünen und roten Fluorophore zu gewährleisten.

Überprüfen Sie das Fluoreszenzmikroskop vor dem Gebrauch, um sich von seiner einwandfreien Funktion zu überzeugen. Verwenden Sie Immersionsöl, das für die Fluoreszenzmikroskopie geeignetist und aufgrund seiner Formulierung eine geringe Autofluoreszenz aufweist. Mischen Sie DAPI-Antifade nicht mit Mikroskop-Immersionsöl, da dadurch die Signale verdeckt werden können. Befolgen Sie hinsichtlich der Lebensdauer der Lampe und dem Alter der Filter die Empfehlungen der Hersteller.

Vorbereitung der Probe

Das Kit ist für den Einsatz auf hämatologisch gewonnenen Zellsuspensionen konzipiert, die in Carnoy'scher Lösung (3:1 Methanol/Essigsäure) fixiert sind und nach den Richtlinien des Labors oder des Instituts vorbereitet werden. Bereiten Sie lufttrocknende Proben nach den zytogenetischen Standardverfahren auf Objektträgern vor. Das AGT Cytogenetics Laboratory Manual enthält Empfehlungen für die Sammlung, Kultivierung und Entrahme von Proben sowie die Präparation der Objektträger⁶.

Vorbereitung der Lösung Ethanollösungen

Verdünnen Sie 100 % Ethanol unter Berücksichtigung der folgenden Mischverhältnisse mit destilliertem Wasser und mischen Sie die Lösung gründlich durch.

- 70 % Ethanol 7 Teile 100 % Ethanol auf 3 Teile destilliertes Wasser
- 85% Ethanol 8,5 Teile 100 % Ethanol auf 1,5 Teile destilliertes Wasser Lagern Sie die Lösungen bis zu 6 Monate bei Raumtemperatur in einem luftdichten Behälter.

2x SSC Lösung

Verdünnen Sie 1 Teil 20x SSC Lösung mit 9 Teilen destilliertem Wasser und mischen Sie die Lösung gründlich durch. Messen Sie den pH-Wert und korrigieren Sie diesen nach Bedarf mit NaOH oder HCl auf einen pH-Wert von 7,0. Lagern Sie die Lösung bis zu 4 Wochen bei Raumtemperatur in einem luftdichten

0,4x SSC Lösung

Verdünnen Sie 1 Teil 20x SSC Lösung mit 49 Teilen destilliertem Wasser und mischen Sie die Lösung gründlich durch. Messen Sie den pH-Wert und korrigieren Sie diesen nach Bedarf mit NaOH oder HCl auf einen pH-Wert von 7,0. Lagern Sie die Lösung bis zu 4 Wochen bei Raumtemperatur in einem luftdichten

2x SSC, 0,05 % Tween-20 Lösung

Verdünnen Sie 1 Teil 20x SSC Lösung mit 9 Teilen destilliertem Wasser. Fügen Sie 5 µl Tween-20 auf 10 ml hinzu und mischen Sie die Lösung gründlich durch. Messen Sie den pH-Wert und korrigieren Sie diesen nach Bedarf mit NaOH oder HCI auf einen pH-Wert von 7,0. Lagern Sie die Lösung bis zu 4 Wochen bei Raumtemperatur in einem luftdichten Behälter.

FISH-Protokoll

(Hinweis: Stellen Sie sicher, dass die Exposition der Sonde und der Gegenfärbung gegenüber den Laborlampen stets begrenzt ist).

Vorbereitung des Objektträgers

- 1. Leuchten Sie die Zellprobe auf einem Objektträger aus Glas aus. Lassen Sie den Objektträger trocknen. (Optional, falls eine zytogenetische Trocknungskammer verwendet wird: die Ausleuchtung der Objektträger sollte in einer zytogenetischen Trocknungskammer vorgenommen werden. Die Kammer sollte bei etwa 25 °C und 50 % Luftfeuchtigkeit betrieben werden, um eine optimale Ausleuchtung der Zellproben sicherzustellen. Steht keine zytogenetische Trocknungskammer zur Verfügung, so kann alternativ auch ein Dunstabzug verwendet werden).
- Tauchen Sie den Objektträger 2 Minuten lang bei Raumtemperatur (RT) in 2x SSC, ohne die Lösung dabei zu schütteln.
- In einer Ethanolserie (70 %, 85 % und 100 %) jeweils 2 Minuten bei RT dehydrieren.
- Lassen Sie den Objektträger trocknen.

Prä-Denaturierung

- Entnehmen Sie die Sonde aus dem Gefrierschrank und erwärmen Sie diese auf RT. Die Röhrchen vor dem Gebrauch kurz zentrifugieren.
- Stellen Sie sicher, dass die Sondenlösung mit einer Pipette gleichmäßig durchgemischt wird.
- Entnehmen Sie jeweils 10 µl Sonde pro Test und geben Sie diese Menge in ein Mikrozentrifugenröhrchen. Geben Sie die verbleibende Sonde schnell wieder zurück in den Gefrierschrank.
- Platzieren Sie die Sonde und den Objektträger mit der Probe zum Vorwärmen 5 Minuten lang auf einer Heizplatte mit einer Temperatur von 37 °C (+/- 1 °C).
- Tröpfeln Sie 10 µl des Sondengemischs auf die Zellprobe und setzen Sie vorsichtig ein Deckglas darauf. Verschließen Sie das Gefäß mit Kleber auf Gummibasis und lassen Sie den Kleber vollständig trocknen.

Denaturierung

10. Denaturieren Sie die Probe und die Sonde gleichzeitig, indem Sie den Objektträger 2 Minuten lang auf einer Heizplatte auf eine Temperatur von 75 °C (+/- 1 °C) erhitzen.

Hybridisierung

11. Platzieren Sie den Objektträger über Nacht in einem feuchten, Tuft dichten Behälter bei einer Temperatur von 37 °C (+/- 1 °C).

Spülgänge nach der Hybridisierung

- 12. Entnehmen Sie die DAPI-Lösung aus dem Gefrierschrank und erwärmen Sie diese auf RT.
- 13. Nehmen Sie das Deckglas ab und entfernen Sie vorsichtig etwaige Kleberrückstände.
- 14. Tauchen Sie den Objektträger 2 Minuten lang bei einer Temperatur von 72 °C (+/- 1 °C) ohne Schütteln in 0,4x SSC (pH7,0) ein.
- 15. Den Objektträger abtropfen lassen und bei RT (pH 7,0) 30 Sekunden lang ohne Schütteln in 2x SSC, 0,05 % Tween-20 eintauchen. 16. Den Objektträger trocknen lassen und 10 µl DAPI Antifade auf jede Probe
- 17. Ein Deckglas aufsetzen, etwaige Blasen entfemen und 10 Minuten abwarten, während sich die Farbe im Dunkeln entwickelt.

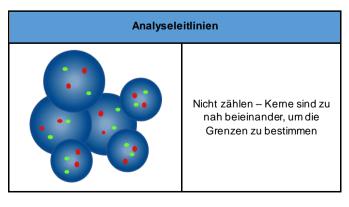
18. Unter einem Fluoreszenzmikroskop betrachten (bitte beachten Sie dazu den Abschnitt "Empfehlungen zum Fluoreszenzmikroskop").

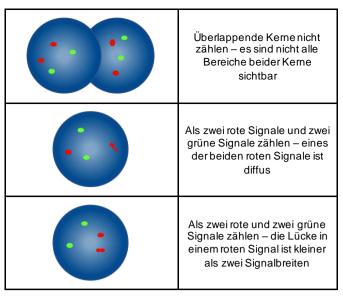
Stabilität der fertigen Objektträger

Fertige Objektträger bleiben bei Lagerung im Dunkeln bei oder unter RT bis zu 1 Monat lang analysierbar.

Empfehlungen zur Vorgehensweise

- Die Ofenbehandlung oder Aushärtung von Objektträgern kann die Signalfluoreszenz reduzieren.
- Die Hybridisierungsbedingungen können beeinträchtigt werden, wenn andere Reagenzien als die verwendet werden, die durch Cytocell Ltd. zur Verfügung gestellt oder empfohlen werden.
- Verwenden Sie ein geeichtes Thermometer, um die Temperatur von Lösungen, Wasserbädern und Inkubatoren zu messen, da dies e für eine optimale Produktleistung eine entscheidende Rolle spielen.
- Die Waschkonzentrationen, der pH-Wert und die Temperaturen sind wichtig, da eine geringe Stringenz zu einer unspezifischen Bindung der Sonde führen kann und eine zu hohe Stringenz ein fehlendes Signal verursachen kann.
- Eine unvollständige Denaturierung kann zu einem fehlenden Signal führen, eine übermäßige Denaturierung dagegen auch zu unspezifischer Bindung.
- Eine übermäßige Hybridisierung kann zu zusätzlichen oder unerwarteten
- Anwender sollten das Protokoll für ihre eigenen Proben optimieren, bevor sie den Test für diagnostische Zwecke einsetzen.
- Suboptimale Bedingungen können zu einer unspezifischen Bindung führen, die fälschlicherweise als Sondensignal interpretiert werden kann.


Auswertung der Ergebnisse Beurteilung der Objektträgerqualität


Der Objektträger sollte nicht analysiert werden, falls folgendes zutrifft:

- Die Signale sind zu schwach für eine Analyse in Einzelfiltern um die Analyse fortzusetzen, sollten Signale hell, deutlich und leicht auswertbar
- Es gibt eine große Anzahl von verklumpten/überlappenden Zellen, welche die Analyse stören.
- >50 % der Zellen sind nicht hybridisiert.
- Es gibt einen Überschuss an fluoreszierenden Partikeln zwischen den Zellen und/oder einen fluoreszierenden Schleier, der die Signale stört - bei einem optimalen Objektträger sollte der Hintergrund dunkel oder schwarz und sauber aussehen.
- Die Zellkerngrenzen sind nicht eindeutig erkennbar und nicht intakt.

Analyseleitlinien

- Jede Probe sollte von zwei Analytikern analysiert und ausgewertet werden. Etwaige Unstimmigkeiten sind durch die Auswertung durch einen dritten Analytiker zu klären
- Jeder Analytiker muss über eine angemessene Qualifikation verfügen, die den anerkannten nationalen Standards entspricht.
- Jeder Analytiker sollte unabhängig voneinander 100 Kerne für jede Probe bewerten. Der erste Analytiker sollte mit seiner Analyse auf der linken Seit e des Objektträgers beginnen, der zweite Analytiker auf der rechten Seite.
- Jeder Analytiker sollte seine Ergebnisse in separaten Tabellen dokumentieren.
- Analysieren Sie nur intakte Kerne, keine überlappenden oder überfüllten Kerne und keine Kerne, die mit zytoplasmatischen Ablagerungen bedeckt sind oder einen hohen Autofluoreszenzgrad aufweisen.
- Meiden Sie Bereiche, in denen übermäßige zytoplasmatische Ablagerungen oder unspezifische Hybridisierung vorhanden sind.
- Die Signalintensität kann variieren, das gilt auch für einzelne Kerne. Verwenden Sie in solchen Fällen Einzelfilter und/oder passen Sie die Bildebene entsprechendan.
- Unter suboptimalen Bedingungen können Signale diffus erscheinen. Wenn sich zwei Signale der gleichen Farbe berühren oder der Abstand zwischen ihnen nicht größer als zwei Signalbreiten ist, oder wenn ein schwacher Strang vorhanden ist, der die beiden Signale verbindet, zählen diese beiden Signale jeweils als ein Signal.
- Falls Sie Zweifel haben, ob eine Zellefür die Analyse in Frage kommt oder nicht, analysieren Sie diese Zelle nicht.

Erwartete Ergebnisse Erwartetes normales Signalmuster

In einer normalen Zelle werden zwei rote und zwei grüne Signale (2R, 2G)

Erwartetes abnormales Signalmuster

In einer Zelle mit ATM Deletion entspricht das erwartete Signalmuster einem roten und zwei grünen Signalen (1R, 2G).

Andere Signalmuster sind bei aneuploiden/unausgewogenen Proben möglich.

Bekannte Kreuzreaktionen

Die grüne D11Z1-Sonde kann bis zu 4 Kreuzhybridisierungssignale an Xc und 17c anzeigen.

Meldung von unerwünschten Ereignissen

Falls Sie der Ansicht sind, dass dieses Produkt eine Fehlfunktion aufweist oder es zu einer Verschlechterung der Leistungsmerkmale gekommen ist, die zu einem unerwünschten Ereignis (z. B. verzögerte Diagnose, Fehldiagnose, verzögerte oder ungeeignete Therapie) geführt haben könnte, muss dies unverzüglich dem Hersteller gemeldet werden. (E-Mail: vigilance@ogt.com).

Ggf. sollte das Ereignis auch Ihrer zuständigen nationalen Behörde gemeldet werden. Eine Liste der Ansprechpartner, die für die Vigilanz verantwortlich sind, finden Sie unter: http://ec.europa.eu/growth/sectors/medical-devices/contacts/

Spezifische Leistungsmerkmale Analytische Spezifität

Analytische Spezifität bezeichnet den Prozentsatz der Signale, die im richtigen Locus und an keinem anderen Ort hybridisiert wurden. Die analytische Spezifität wurde durch die Analyse von insgesamt 200 Zielloci ermittelt. Die analytische Spezifität wurde berechnet, indem die Anzahl der FISH-Signale, die an den richtigen Locus hybridisiert wurden, durch die Gesamtzahl der hybridisierten FISH-Signale dividiert wurde.

Tabelle 1 Analytische Spezifität der ATM Deletion Probe

Sonde	Ziellocus	Anzahl der Signale, die im richtigen Locus hybridisiert wurden	Gesamtzahl der hybridisierten Signale	Spezifität (%)
Rot ATM	11q22.3	200	200	100
Grün D11Z1	11q11.1- q11.1	200	200	100

Analytische Sensitivität

Die analytische Sensitivität ist der Prozentsatz der auswertbaren Zellen in der Interphase, die das erwartete normale Signalmuster aufweisen. Die analytische Sensitivität wurde durch die Analyse von Zellen in der Interphase in verschiedenen normalen Proben ermittelt. Die Sensitivität wurde als Prozentsatz der auswertbaren Zellen berechnet, die das erwartete Signalmuster auf weisen (mit einem Konfidenzintervall von 95 %).

Tabelle 2 Analytische Sensitivität der ATM Deletion Probe

Anzahl der Zellen mit erwarteten Signalmustern	Anzahl der Zellen mit auswertbaren Signalen	Sensitivität (%)	95 % Konfidenzintervall
482	500	96,4	1,0

Charakterisierung der normalen Cut-off-Werte

Der normale Cut-off-Wert ist in Verbindung mit FISH-Sonden der maximale Prozentsatz der auswertbaren Zellen in der Interphase mit einem spezif isch en abnormalen Signalmuster, bei dem eine Probefür das betreffende Signalmuster als normal gilt.

Der normale Cut-off-Werte wurde anhand von Proben von normalen und positiven Patienten ermittelt. Für jede Probe wurden die Signalmus ter von 100 Zellen aufgezeichnet. Der Youden-Index wurde berechnet, um den Schwellenwert zu ermitteln, für den Sensitivität + Spezifität-1 maximiert ist.

Tabelle 3 Charakterisierung der normalen Cut-off-Werte der ATM Deletion Probe

Abnormales Signalmuster	Youden-Index	Normaler Cut-off-Wert (%)
1R, 2G	0,99	9

Labore müssen die Cut-off-Werte anhand eigener Daten überprüfen^{7,8}.

Genauigkeit und Reproduzierbarkeit

Präzision ist ein Maß für die natürliche Variation eines Tests, wern er mehrmals unter den gleichen Bedingungen wiederholt wird. Dies wurde be wertet, in dem Wiederholungen mit der gleichen Losnummer der getesteten Sonde an derselben Probe bei identischen Bedingungen am selben Tag analysiert wurden.

Die Reproduzierbarkeit ist ein Maß für die Variabilität eines Tests und wurde in Bezug auf die Variabilität von Probe zu Probe, Tag zu Tag und von Charge zu Charge bestimmt. Die Reproduzierbarkeit von Tag zu Tag wurde durch Analyse derselben Proben an drei verschiedenen Tagen bewertet. Die Reproduzierbarkeit von Charge zu Charge wurde durch Analyse derselben Proben mit drei verschiedenen Losnummern der Sonde am gleichen Tag bewertet. Die Reproduzierbarkeit von Probe zu Probe wurde durch Analyse von drei Kopien einer Probe am gleichen Tag bewertet. Für jede Probe wurden die Signalmuster von 100 Zellen in der Interphase aufgezeichnet und der Prozentsatz der Zellen berechnet, die das erwartete Signalmuster aufwiesen.

Die Reproduzierbarkeit und Genauigkeit wurde als Standardabweichung (STDEV) zwischen den Parallelproben für jede Variable und dem Gesamtmittelwert der Standardabweichung berechnet.

Tabelle 4 Reproduzierbarkeit und Genauigkeit der ATM Deletion Probe

Variable	Standardabweichung (STDEV)
Präzision	0,38
Von Probe zu Probe	0,38
Von Tag zu Tag	0,58
Von Charge zu Charge	1,27
Gesamtabweichung	1,01

Klinische Leistung

Die klinische Leistung wurde an einer repräsentativen Stichprobe der für das Produkt vorgesehenen Zielpopulation ermittelt. Für jede Probe wurden die Signalmuster von ≥100 Zellen in der Interphase aufgezeichnet. Die Entscheidung zwischen normal und anormal wurde getroffen, indem der Prozentsatz der Zellen mit einem bestimmten abnormalen Signalmuster mit dem normalen Cut-off-Wert verglichen wurde. Die Ergebnisse wurden dann mit dem bekannten Status der Probe verglichen.

Die Ergebnisse der klinischen Daten wurden analysiert, um Sensitivität, Spezifität und Cut-off-Werte mit einem eindimensionalen Ansatz zu erzeugen.

Tabelle 5 Klinische Leistung der ATM Deletion Probe

Variable	Ergebnis
Klinische Sensitivität (Richtig-Positiv-Rate, TPR)	100%
Klinische Spezifität (Richtig-Negativ-Rate, TNR)	99,2%
Falsch-Positiv-Rate (FPR) = 1 – Spezifität	0.8%

Zusätzliche Informationen

Für weitere Produktinformationen wenden Sie sich bitte an den technischen Support von CytoCell.

Tel.: +44 (0)1223 294048 E-Mail: techsupport@cytocell.com

Website: www.ogt.com

Referenzen

- 1. Stankovic et al., Blood 2004;103(1):291-300
- 2. Dohner et al., N Eng J Med 2000;343:1910-1916
- 3. Zent et al., Blood 2010;115(21):4154-4155
- 4. Rossi et al., Blood 2013;121(8):1403-1412
- 5. Khanna et al., Nature Genetics 1998;20(4):398-400
- Arsham, MS., Barch, MJ. and Lawce HJ. (eds.) (2017) The AGT Cytogenetics Laboratory Manual. New Jersey: John Wiley & Sons Inc.
- Mascarello JT, Hirsch B, Kearney HM, et al. Section E9 of the American College of Medical Genetics technical standards and guidelines: fluorescence in situ hybridization. Genet Med. 2011;13(7):667-675.
- Wiktor AE, Dyke DLV, Stupca PJ, Ketterling RP, Thorland EC, Shearer BM, Fink SR, Stockero KJ, Majorowicz JR, Dewald GW. Preclinical validation of fluorescence in situ hybridization assays for clinical practice. Genetics in Medicine. 2006;8(1):16–23.

Symbolleitfaden

: Katalognummer
: Medizinprodukt für die <i>in vitro</i> Diagnostik
: Chargencode
: Gebrauchsanweisung beachten
: Hersteller
: Verfallsdatum
: Temperaturgrenze
: Vor Sonnenlicht schützen
: Menge reicht für <n> Tests</n>
: Inhalt

Patente und Warenzeichen

CytoCell ist eine eingetragene Warenzeichen von Cytocell Ltd.

Cytocell Ltd.

3-4 Technopark Newmarket Road Cambridge, CB5 8PB, UK. Tel.: +44(0)1223 294048 Fax: +44(0)1223 294986

E-Mail: probes@cytocell.com
Website: www.ogt.com