SureSeq

Concurrent detection of somatic copy number alterations and gene variants (SNV/indels) in CLL samples using a targeted NGS panel

Graham Speight, Ezam Uddin, Aysel Heckel, Venu Pullabhatla, James Reid and Lyudmila Georgieva 10xford Gene Technology (OGT).

Introduction

A wide variety of chromosomal abnormalities are associated with Chronic Lymphocytic Leukaemia (CLL). Currently, comprehensive genetic research into CLL requires multiple testing strategies with high associated costs.

Somatic mutations (Single Nucleotide Variants (SNVs) and insertion/deletions (indels)) can be identified by next generation sequencing (NGS), but copy number alterations (CNAs) currently require additional cytogenetic methods including karyotyping, fluorescence in situ hybridisation (FISH) and microarrays. For a more complete picture, follow-up assays are required to determine the trigger(s) behind the malignant transformation and to characterise the genetic profile to aid research into prognosis and disease management.

In this study, we tested the capability of SureSeq[™] NGS panel to overcome the challenges with detecting CNAs currently experienced and provide a possible future single test to be developed for CLL.

Methods

We utilised a SureSeq CLL CNV – 14 gene panel and associated library preparation kit to determine whether this approach can be used for detection of somatic CNAs as well as SNVs and indels.

CLL CNV - 14 gene panel can be used for:

- 1. Detection of SNV and indels in 14 genes ATM, PLCG2, BIRC3, BRAF, TP53, XPO1, SF3B1, KRAS, MYD88, SAMHD1, NOTCH1, BTK, CXCR4 and SRY.
- 2. Detection of somatic CNAs within 5 chromosomal regions 17p (covering TP53), 11q (covering ATM), 13q (covering RB1/DLEU2/DLEU7), 6q (covering MYB) and Trisomy 12.

We used a hybridisation-based enrichment approach for library preparation and analysed 15 research samples* with known CNAs. We also analysed 24 samples (Coriell, Camden, NJ) with no known CNVs in the regions of interest which were used as control/reference samples. The resulting libraries were sequenced using a 2x150 bp read length protocol on an Illumina MiSeq[®]. All research samples were also processed on the Cytoscan[™] HD microarray and associated software (Affymetrix[®]) allowing for comparison of findings of copy number alterations in each sample.

Bioinformatics Analysis

Data sequencing analysis including CNA detection was performed using Interpret, OGT's complimentary gene variants and CNV detection software.

Results I

Confident detection of SNV and indels in 14 genes

We achieved high depth (>2000x) and excellent uniformity of coverage across the targeted 14 genes which enabled the confident detection of low frequency gene specific SNVs and indels.

Validation of the CLL CNV - 14 gene panel and enhanced CNA detection software with **15 research samples**

- Data presented here are from 15 research samples (1 control with no CNAs in the regions of interest) that were processed using the OGT workflow in combination with OGT's complimentary gene variant and CNV detection software.
- Table 1 details the range of CNAs detected from 15 research samples. These include CNAs on chromosomes 17p, 11q and 13q. No CNAs were identified in the control sample.
- CNA events were reported in samples with predicted tumour content as low as 25%.

Sample	Region of aberration	CNA calls by SNP Array				CNA calls by NGS			
		Position (hg19)	Size (Mb)	Туре	% Cells	Position (hg19)	Size (Mb)	Туре	Copy number ratio (log scale)
1	11q	chr11:84748415-135068576	50.3	del	unknown	chr11:78784668-134585879	55.8	del	-0.58
2	13q	chr13:30818277-56270736	25.4	del	60%	chr13:31231652-56200534	25.0	del	-0.43
3	11q	chr11:78714880-134500539	55.9	del	80%	chr11:84672154-134455774	49.8	del	-0.51
4	17p	chr17:159683-17332764	17.2	del	70%	chr17:65607-16934510	6.9	del	-0.60
5	11q 13q	chr11:103932028-117102219 chr13:49991845-50928235	13.2 0.9	del del	70% 80%	chr11:103960595-116913934 chr13:50646193-51491987	13.0 0.8	del del	-0.37 -0.73
6	13q	chr13:48410813-48591913	0.18	del	70%	chr13:48989061-49149794	0.20	del	-3.60
7	13q 17p	chr13:33933290-66645972 chr17:7505268-7799401	32.7 0.29	del del	55% 50%	chr13:35270684-66902754 chr17:7572892-7579950	31.6 0.1	del del	-0.29 -0.45
8	13q	chr13:32213738-51880962	19.7	del	40%	chr13:33000556-52263527	19.3	del	-0.25
9	13q	chr13:48296646-51220419	2.9	del	40%	chr13:48891811-51782999	2.9	del	-0.38
10	11q	chr11:82432986-122087779	39.8	del	35%	chr11:84672154-121867725	37.2	del	-0.24
11	17p	chr17:150732-21415511	21.3	del	25%	chr17:65607-22072006	22.0	del	-0.16
12	17p	chr17:150732-19240663 chr17:19240830-22763679	19.1 3.5	del dup	unknown	chr17:215815-19020899 chr17:19565067-23871234	18.8 4.3	del dup	-0.69 0.58
13	17p	chr17:150208-19019419 chr17:19240662-22763679	18.1 3.5	del dup	unknown	chr17:215815-19565117 chr17:20134934-23871234	19.3 3.7	del dup	-0.76 0.63
14	13q	chr13:48296646-51220419	2.9	del	unknown	chr13:49749072-51802126	2.1	del	-0.39
15		No CNVs expected				No CNVs detected			

Table 1: Data generated with the CLL CNV - 14 gene panel using a combination of OGT workflow and enhanced CNV detection software was 100% concordant with independent findings (West Midlands Regional Genetics Laboratory -Birmingham, UK).

Acknowledgements *Samples kindly provided by West Midlands Regional Genetics Laboratory - Birmingham, UK

What binds us, makes us.

Results II

Confident detection of Copy Number Alterations

Using the OGT workflow we were able to reliably detect somatic copy number alterations in 15 research samples. For all samples, predicted CNAs were found to be 100% concordant with the reported events with the array data.

NGS

2000.003 Q.1746

Figure 4: 181kb biallelic deletion within 13q14.2 including RB1

NGS

Figure 5: 17.2 Mb deletion of 17pter to p11.2.

NGS

Array

Array

Figure 6: 11 Mb deletion of 13q14.2q14.3, including DLEU2 and DLEU7 genes.

NGS

Figure 7: 56 Mb deletion of 11q14.1 to 11q25

Array

Conclusions

- Superior uniformity of coverage from a hybridisation-based enrichment using the SureSeq CLL CNV – 14 gene panel allowed simultaneous detection of SNVs, indels as well as larger structural alterations in a single assay.
- We have demonstrated the capability of a SureSeq CLL CNV 14 gene panel to detect complex rearrangements, ranging from a single gene (10 kb deletion covering TP53) to whole arm somatic deletions in samples with tumour content as low as 25%.
- Our approach allows for the simultaneous evaluation of numerous chromosomal and gene-specific aberrations using a single assay.

Figure 2: Example of *SF3B1* exon

15 hotspot variant Lys700Glu with

OGT SureSeq protocol averaging ~2000x deduplicated coverage.

Depth of coverage per base (grey).

frequency 4.8%. Data generated with

Figure 3: Example of *TP53* exon 4 frameshift deletion (TP53 c.124del) with frequency 38.9%. Data generated with OGT SureSeg protocol averaging ~2000x deduplicated coverage. Depth of coverage per base (grey).