

Istruzioni per l'uso

RIF: LPH 032-S / LPH 032

FIP1L1/CHIC2/PDGFRA Deletion/Fusion Probe

SOLO PER USO PROFESSIONALE

Ulteriori informazioni e altre lingue disponibili su www.ogt.com

Limitazioni

Il presente dispositivo è ideato per individuare delezioni nella regione coperta dal clone rosso in questo set di sonde, la quale include la regione *CHIC2*. I breakpoint esterni a questa regione, riarrangiamenti varianti interamente contenuti entro questa regione o perdite parziali di questa regione potrebbero non venire rilevati da questo prodotto.

Il test non è destinato a: utilizzo come diagnostica indipendente, test prenatale, screening basato sulla popolazione, test vicino al paziente o autodiagnosi. Questo prodotto è destinato unicamente a uso professionale di laboratorio; tutti i risultati devono essere interpretati da personale adeguatamente qualificato, prendendo in considerazione altri risultati di test pertinenti.

Questo prodotto non è stato convalidato per l'utilizzo su tipi di campioni o tipi di patologie diversi da quelli specificati nell'uso previsto.

La refertazione e l'interpretazione dei risultati della FISH devono essere coerenti con gli standard professionali della pratica medica e devono prendere in considerazione altre informazioni cliniche e diagnostiche. Questo kit è concepito in aggiunta ad altri test diagnostici di laboratorio e l'azione terapeutica non deve essere messa in atto esclusivamente sulla base del risultato di FISH.

La mancata aderenza del protocollo può incidere sulle prestazioni e portare a risultati positivi/negativi.

Il kit non è stato convalidato per fini diversi dall'uso previsto dichiarato.

Uso previsto

CytoCell FIP1L1/CHIC2/PDGFRA Deletion/Fusion Probe è un test qualitativo, non automatizzato d'ibridazione in situ fluorescente (FISH) utilizzato per rilevare riarrangiamenti cromosomici nella regione 4q12 sul cromosoma 4 in sospensioni cellulari derivate ematologicamente fissate in soluzione di Carnoy (3:1 metanolo/acido acetico) da pazienti con neoplasie mieloproliferative (NMP) confermate o sospette.

Indicazioni

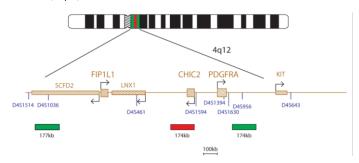
Questo prodotto è ideato come aggiunta ad altri test clinici e istopatologici in percorsi diagnostici e di cura clinica riconosciuti, dove la conoscenza dello stato dei riarrangiamenti di FIP1L1-CHIC2-PDGFRA sarebbe importante per la gestione clinica.

Principi del test

L'ibridizzazione *in situ* fluorescente (fluorescence in situ hybridization, FISH) è una tecnica che consente di rilevare sequenze di DNA su cromosomi in metafase o in nuclei interfasici di campioni citogenetici fissati. La tecnica prevede l'utilizzo di sonde di DNA in grado di ibridare con per cromosomi interi o singole sequenze uniche, e rappresenta un potente strumento in aggiunta all'analisi citogenetica con bandeggio G. Tale tecnica può essere applicata oggi come strumento diagnostico essenziale nell'analisi cromosmica prenatale, ematologica e nei tumori solidi. Il DNA bersaglio, dopo fissazione e denaturazione, è disponibile per l'annealing per una sonda di DNA similmente denaturata, marcata con sostanza fluorescente, a sequenza complementare. Terminata l'ibridazione, la sonda di DNA non legata o legata in modo non specifico viene rimossa e il DNA viene colorato con un colorante di contrasto. L'utilizzo della microscopia a fluorescenza permette quindi la visualizzazione della sonda ibridata sul materiale target.

Informazioni sulla sonda

La delezione di CHIC2 (dominio 2 idrofobo ricco di cisteina) su 4q12 ha come esito la fusione di FIP1L1 (fattore che interagisce con PAPOLA e CPSF1) su 4q12 con PDGFRA (recettore alfa del fattore di crescita derivato da piastrine) su 4q12 che produce una tirosin-chinasi che trasforma le cellule ematopoietiche¹.


Nella classificazione del 2008 dell'Organizzazione mondiale della sanità (OMS) di neoplasie mieloidi e leucemia acuta, è stato introdotto un nuovo sottogruppo di neoplasie mieloidi: Neoplasie mieloidi e linfoidi con eosinofilia e alterazioni di PDGFRA, PDGFRB o FGFR1. Questi neoplasmi costituiscono tre specifici gruppi di malattia, con alcune caratteristiche condivise¹.

Le neoplasie mieloproliferative (NMP) più comuni che mostrano riarrangiamenti di PDGFRA sono quelle con fusioni FIP1L1-PDGFRA. Queste NMP si presentano come leucemia eosinofilica cronica (LEC) o, più raramente, come leucemia mieloide acuta (LMA). Poiché tale anormalità è criptica dal punto di vista citogenetico, il test FISH fornisce un utile strumento per l'individuazione della fusione^{1,2}.

I pazienti con la fusione traggono beneficio dal trattamento con inibitori delle tirosinchinasi (TKI). La diagnosi del gene di fusione può quindi portare a scelte terapeutiche per il paziente^{1,2}.

Specifiche della sonda

FIP1L1, 4q12, verde CHIC2, 4q12, rosso PDGFRA, 4q12, verde

Il prodotto FIP1L1/CHIC2/PDGFRA è costituito da una sonda di 177kb, marcata in verde, localizzata centromerica rispetto al gene FIP1L1, che include il marcatore D4S1036, da una sonda di 174kb, marcata in rosso che copre il gene CHIC2, e una sonda di 174kb, marcata in verde, localizzata telomerica rispetto al gene PDGFRA, che include il marcatore D4S956.

Materiali forniti

Sonda: 50µl per provetta (5 test) o 100µl per provetta (10 test)

Le sonde sono fornite già mescolate nella soluzione d'ibridazione (formamide; destrano solfato; citrato salino di sodio (SSC)) e sono pronte all'uso.

Colorante da contrasto: 150µl per provetta (15 test)

La colorazione con contrasto è DAPI Antifade (ES: 0,125µg/ml DAPI (4,6-diamidino-2-fenilindolo)).

Avvertenze e misure precauzionali

- Per uso diagnostico *in vitro*. Solo per uso professionale.
- Quando si manipolano le sonde ed il colorante di contrasto DAPI è necessario indossare i guanti.
- Le miscele di sonda contengono formamide, una sostanza tetratogena; non respirare fumi ed evitare il contatto con la pelle. Maneggiare con cura; indossare guanti e un camice da laboratorio.
- DAPI è un potenziale cancerogeno. Maneggiare con cura; indossare guanti e un camice da laboratorio.
- Eseguire lo smaltimento dei materiali pericolosi nel rispetto delle normative interne dell'istituto relative allo smaltimento dei residui tossici.
- 6. Gli operatori devono essere in grado di distinguere i colori rosso, blu e verde.
- La mancata aderenza al protocollo descritto e ai reagenti può incidere sulle prestazioni e portare a risultati falsi positivi/negativi.
- La sonda non deve essere diluita o mescolata con altre sonde.
- Il mancato utilizzo di 10µl di sonda durante lo stadio di pre-denaturazione del protocollo può incidere sulla prestazione e portare a risultati falsi positivi/negativi.

Conservazione e utilizzo

Conservare il kit in congelatore a una temperatura compresa tra -25 °C e -15 °C fino alla data di scadenza riportata sull'etichetta del kit. Conservare i flaconcini della sonda e del colorante di contrasto al buio.

La sonda rimane stabile nel corso dei cicli di congelamentoscioglimento sperimentati durante l'uso normale (dove un ciclo rappresenta la rimozione della sonda dal congelatore e la sua ricollocazione all'interno di quest'ultimo) ed è fotostabile fino a un massimo di 48 ore dopo essere stata esposta a condizioni di illuminazione continue. È necessario intraprendere tutti gli sforzi per limitare l'esposizione a variazioni di luce e temperatura.

Apparecchiature e materiali necessari ma non forniti

È necessario utilizzare apparecchiature calibrate:

- Piastra riscaldante (con una piastra solida e controllo accurato della temperatura fino a 80 °C)
- 2. Micropipette a volume calibrato variabile compreso tra 1µl 200µl
- 3. Bagno termostato con controllo accurato della temperatura a 37 °C e 72 °C
- 4. Provette da microcentrifuga (0,5 ml)
- Microscopio a fluorescenza (riferirsi alla sezione Configurazione ottimale del microscopio a fluorescenza)
- 6. Microscopio a contrasto di fase
- 7. Contenitori di Coplin in plastica, ceramica o vetro resistente al calore
- 8. Pinzette
- Misuratore calibrato del pH (o strisce indicatrici del pH capace di misurare pH da 6,5 a 8,0)
- 10. Contenitore umidificato
- 11. Olio per lenti ad immersione del microscopio a fluorescenza.
- 12. Centrifuga da banco.
- 13. Vetrini da microscopia
- 14. Coprioggetto 24x24
- 15. Timer
- 16. Incubatore a 37 °C
- 17. Colla per vetrini
- 18. Miscelatore a vortice
- 19. Cilindri graduati
- 20. Agitatore magnetico
- 21. Termometro calibrato

Apparecchiature opzionali non fornite

1. Stufa per asciugatura citogenetica

Reagenti necessari ma non forniti

- 1. Soluzione 20x di citrato salino di sodio (SSC)
- 2. 100% etanolo
- 3. Tween-20
- 4. 1M sodio idrossido (NaOH)
- 5. 1M acido idroclorico (HCI)
- 6. Acqua purificata

Configurazione ottimale del microscopio a fluorescenza

Per una visualizzazione ottimale della sonda si raccomanda di utilizzare una lampada a mercurio da 100-watt ed obiettivi plan apochromat 60/63x e 100x. I fluorofori utilizzati in questa sonda ecciteranno ed emetteranno alle seguenti lunghezze d'onda:

Fluoroforo	Eccitazione _{max} [nm]	Emissione _{max} [nm]
Verde	495	521
Rosso	596	615

Assicurare un'eccitazione appropriata e assicurarsi che i filtri di emissione che coprono le lunghezze d'onda elencate sopra siano adatti al microscopio. Utilizzare un filtro triplo bandpass DAPI/spettro green/spettro red o un filtro dual spettro green/spettro red per una visualizzazione simultanea dei fluorofori verdi e rossi.

Controllare il microscopio a fluorescenza prima dell'uso per garantire che stia funzionando correttamente. Utilizzare olio a immersione adatto per microscopio a fluorescenza e formulato per bassa autofluorescenza. Evitare di mescolare DAPI Antifade con l'olio a immersione per microscopio poiché questo oscurerà i segnali. Seguire le raccomandazioni del fabbricante in relazione alla vita della lampada e all'età dei filtri.

Preparazione del campione

Il kit è progettato per l'utilizzo su sospensioni cellulari ematologicamente derivate, fissate in soluzione di Carnoy (3:1 metanolo/acido acetico), le quali sono preparate secondo le linee guida del laboratorio o dell'istituto. Stendere i campioni essiccati su vetrini da microscopia secondo le procedure citogenetiche standard. L'AGT Cytogenetics Laboratory Manual, contiene raccomandazioni per il prelievo, coltura, raccolta di esemplari e per la realizzazione di vetrini³.

Preparazione della soluzione

Soluzioni di etanolo

Diluire 100% etanolo con acqua purificata utilizzando i seguenti rapporti e miscelare accuratamente:

- 70% etanolo 7 parti 100% etanolo per 3 parti di acqua purificata
- 85% etanolo 8,5 parti 100% etanolo per 1,5 parti di acqua purificata

Conservare le soluzioni fino a 6 mesi a temperatura ambiente in un contenitore a chiusura ermetica.

Soluzione 2xSSC

Diluire 1 parte di soluzione 20xSSC con 9 parti di acqua purificata e miscelare in modo accurato. Controllare il pH e correggere a pH 7,0 mediante NaOH oppure HCl come richiesto. Conservare la soluzione fino a 4 mesi a temperatura ambiente in un contenitore a chiusura ermetica.

Soluzione 0,4xSSC

Diluire 1 parte di soluzione 20xSSC con 49 parti di acqua purificata e miscelare in modo accurato. Controllare il pH e correggere a pH 7,0 mediante NaOH oppure HCl come richiesto. Conservare la soluzione fino a 4 mesi a temperatura ambiente in un contenitore a chiusura ermetica.

Soluzione 2xSSC, 0,05% Tween-20

Diluire 1 parte di soluzione 20xSSC con 9 parti di acqua purificata. Aggiungere 5µl di Tween-20 per 10ml e miscelare accuratamente. Controllare il pH e correggere a

pH 7,0 mediante NaOH oppure HCl come richiesto. Conservare la soluzione fino a 4 mesi a temperatura ambiente in un contenitore a chiusura ermetica.

Protocollo FISH

(Nota: Durante l'intera procedura limitare l'esposizione della sonda e del colorante di contrasto alle luci di laboratorio).

Preparazione del vetrino

- 1. Caricare il campione cellulare su un vetrino da microscopia. Lasciare asciugare il vetrino. (Opzionale, se si utilizza una stufa per citogenetica: i vetrini devono essere caricati utilizzando una stufa per citogenetica. La camera deve essere azionata a un'umidità di circa 25 °C e al 50% di umidità per una caricatura del campione cellulare ottimale. Se non è disponibile una stufa per citogenetica, utilizzare una cappa fumaria come alternativa).
- Immergere il vetrino in 2xSSC per 2 minuti a temperatura ambiente (TA) senza agitazione.
- Disidratare in una serie di etanolo (70%, 85% e 100%), ciascuna per 2 minuti a TA.
- 4. Lasciare asciugare il vetrino.

Pre-denaturazione

- Rimuovere la sonda dal congelatore e lasciarla riscaldare a TA. Centrifugare brevemente le provette prima dell'uso.
- Assicurarsi che la soluzione della sonda sia miscelata in modo uniforme mediante una pipetta.
- Pipettare 10µl di sonda per test e inserirli in una provetta da microcentrifuga. Riporre velocemente la sonda rimanente nel congelatore.
- Posizionare la sonda e il vetrino del campione a preriscaldare su una piastra riscaldante a 37 °C (+/- 1 °C) per 5 minuti.
- Caricare 10µl di miscela della sonda sul campione cellulare e coprire delicatamente con un coprioggetto. Sigillare con soluzione collante gommosa e far asciugare completamente.

Denaturazione

10. Denaturare il campione e la sonda contemporaneamente riscaldando il vetrino su una piastra riscaldante a 75 °C (+/- 1 °C) per 2 minuti.

Ibridazione

Posizionare il vetrino su un contenitore umido a prova di luce a 37 °C (+/- 1 °C) durante la notte.

Lavaggi post-ibridazione

- 12. Rimuovere il DAPI dal congelatore e lasciarlo riscaldare a TA.
- 13. Rimuovere attentamente il coprioggetto e tutte le tracce di colla.
- Lavare il vetrino in 0,4xSSC (pH 7,0) a 72 °C (+/- 1 °C) per 2 minuti, senza agitazione.
- 15. Scolare il vetrino e lavare in 2xSSC, Tween-20 0,05% (pH 7,0) a TA per 30 secondi senza agitazione.
- 16. Scolare i vetrini e applicare 10μl di DAPI antifade su ciascun campione.
- Coprire con un vetrino coprioggetto, rimuovere eventuali bolle e attendere 10 minuti lasciando il vetrino al buio.
- Analizzare con un microscopio a fluorescenza (vedere Configurazione ottimale del microscopio a fluorescenza).

Stabilità dei vetrini finiti

I vetrini finiti restano analizzabili per circa 1 mese se conservati al buio a temperatura pari o inferiore a quella ambiente.

Raccomandazioni per l'uso

- L'eccessivo riscaldamento o l'invecchiamento dei vetrini potrebbe ridurre la fluorescenza del segnale.
- Le condizioni d'ibridazione potrebbero essere influenzate negativamente dall'impiego di reagenti differenti rispetto a quelli forniti o raccomandati da Cytocell Ltd.
- L'utilizzo di un termometro calibrato è fortemente raccomandato per la misurazione delle temperature delle soluzioni, dei bagni termostati e degli incubatori in quanto queste temperature sono di fondamentale importanza per la performance ottimale del prodotto.
- Le concentrazioni del lavaggio (stringenza), il pH e la temperatura sono di fondamentale importanza in quanto condizioni di stringenza blande possono favorire un legame non specifico della sonda e condizioni di stringenza troppo elevate possono condurre alla perdita del segnale.
- 5. La denaturazione incompleta può tradursi in una perdita del segnale, mentre una denaturazione eccessiva può anche tradursi in un legame non specifico.
- Come esito di una sovra-ibridazione, possono verificarsi segnali aggiuntivi o imprevisti.
- Prima di utilizzare il test per obiettivi diagnostici, è necessario ottimizzare il protocollo per i propri campioni.
- Condizioni sub-ottimali possono avere come esito un legame non specifico che può essere interpretato erroneamente come segnale di sonda.

Interpretazione dei risultati

Valutazione della qualità dei vetrini

Il vetrino non deve essere analizzato se:

- I segnali sono troppo deboli da analizzare in filtri singoli; al fine di procedere con l'analisi, i segnali devono apparire brillanti, distinti e facilmente valutabili
- Vi sono numerose cellule raggruppate/sovrapposte che impediscono l'analisi
- II >50% delle cellule non sono ibridate
- Vi è un eccesso di particelle fluorescenti tra le cellule e/o una foschia fluorescente che interferisce con i segnali; in vetrini ottimali lo sfondo dovrebbe apparire scuro o nero e pulito
- I confini del nucleo cellulare non possono essere distinti e non sono intatti

Linee guida di analisi

- Ogni campione deve essere analizzato e interpretato da due analisti. Eventuali discrepanze devono essere risolte mediante valutazione da parte di un terzo analista.
- Ciascun analista deve essere adeguatamente qualificato secondo gli standard nazionali riconosciuti
- Ciascun analista deve dare indipendentemente un punteggio a 100 nuclei per ciascun campione. Il primo analista deve iniziare l'analisi dal lato sinistro del vetrino e il secondo analista dal lato destro
- Ciascun analista deve documentare i propri risultati in fogli separati
- Analizzare solo nuclei intatti, non sovrapposti o affollati o nuclei coperti da detriti citoplasmatici o da un elevato grado di autofluorescenza
- Evitare aree dove vi è un eccesso di detriti citoplasmatici o ibridazione non specifica
- L'intensità del segnale può variare, anche con un singolo nucleo. In tali casi, utilizzare filtri singoli e/o correggere il piano focale
- In condizioni sub-ottimali, i segnali possono apparire confusi. Se due segnali dello stesso colore si toccano o la distanza tra di loro non è maggiore di due larghezze di segnale, o quando vi è un filamento debole che connette i due segnali, contare come un segnale
- In caso di dubbio se la cellula sia analizzabile o meno, non effettuare l'analisi

Linee guida	di analisi
	Non contare - nuclei troppo vicini l'un l'altro per determinare confini
	Non contare nuclei che si sovrappongono - tutte le aree di entrambi i nuclei non sono visibili
	Contare come due segnali rossi e due segnali verdi - uno dei due segnali rossi è diffuso
	Contare come due segnali rossi e due segnali verdi - lo spazio in un segnale rosso è minore di due lunghezze di segnale

Risultati attesi Modello di segnale normale atteso

In una cellula normale, sono attesi due segnali di fusione rosso/verde (2F).

Modello di segnale anormale atteso

In una cellula con delezione CHIC2, il modello di segnale atteso sarà uno verde e un segnale di fusione rosso/verde (1V, 1F).

Altri modelli di segnale sono possibili in esemplari aneuploidi/non bilanciati.

Reattività incrociata nota

Nessuna reattività incrociata nota.

Segnalazione di eventi avversi

Se si crede che questo dispositivo abbia avuto malfunzionamenti o subito un deterioramento nelle sue caratteristiche di prestazione che possono aver contribuito a un evento avverso (ad es., ritardata o errata diagnosi, ritardato o inappropriato trattamento), ciò deve essere immediatamente segnalato al fabbricante (e-mail: vigilance@ogt.com).

Se pertinente, l'evento deve essere segnalato anche alla propria autorità nazionale competente. Un elenco di punti di vigilanza può essere trovato presso: http://ec.europa.eu/growth/sectors/medical-devices/contacts/.

Caratteristiche specifiche di prestazione

Specificità analitica

La specificità analitica è la percentuale di segnali che si ibridano al locus corretto e nessun'altra localizzazione. La specificità analitica è stata stabilita analizzando un totale di 200 loci target. La specificità analitica è stata calcolata come il numero di segnali FISH che si sono ibridati al locus corretto diviso per il numero totale di segnali FISH ibridati.

Tavola 1. Specificità analitica per FIP1L1/CHIC2/PDGFRA Deletion/Fusion Probe

Sonda	Locus target	Numero di segnali ibridati al locus corretto	N. totale di segnali ibridati	Specificità (%)
Verde FIP1L1	4q12	200	200	100
Rosso CHIC2	4q12	200	200	100
Verde PDGFRA	4q12	200	200	100

Sensibilità analitica

Sensibilità analitica è la percentuale di cellule interfase a cui è possibile fornire un punteggio con il modello di segnale normale atteso. La sensibilità analitica è stata stabilita analizzando cellule interfase in differenti campioni normali. La sensibilità è stata calcolata come la percentuale di cellule a cui è possibile fornire un punteggio con il modello di segnale atteso (con un intervallo di confidenza del 95%).

Tavola 2. Sensibilità analitica per FIP1L1/CHIC2/PDGFRA Deletion/Fusion Probe

N. di cellule con modelli di segnale atteso	N. di cellule con segnali a cui è possibile fornire un punteggio	Sensibilità (%)	Intervallo di confidenza del 95%
492	500	98,4	1,3

Caratterizzazione dei valori normali di cut off

Il valore normale di cut off, in associazione con sonde FISH, è la percentuale massima di cellule interfase a cui è possibile fornire un punteggio con un modello di segnale anormale specifico in cui un campione è considerato normale per quel modello di segnale.

Il valore normale di cut off è stato stabilito utilizzando campioni di pazienti normali e positivi. Per ciascun campione, sono stati registrati i modelli di segnale di 100 cellule. L'indice Youden è stato calcolato per trovare il valore di soglia per cui la Sensibilità + Specificità-1 viene massimizzata.

Caratterizzazione dei valori normali di cut off per FIP1L1/CHIC2/PDGFRA Deletion/Fusion Probe

	Modello di segnale anormale	Indice Youden	Cut off normale (%)
I	1G, 1F	1,00	5

I laboratori devono verificare i valori di cut off utilizzando i propri dati^{4, 5}.

Precisione e riproducibilità

La precisione è una misura della variazione naturale di un test quando viene ripetuto diverse volte nelle medesime condizioni. Questo è stato stabilito analizzando ripetizioni dello stesso numero di lotti di sonde testati sul medesimo campione, nelle medesime condizioni nello stesso giorno.

La riproducibilità è una misura della variabilità di un test ed è stata stabilita da campione a campione, da giorno a giorno e da lotto a lotto. La riproducibilità da giorno a giorno è stata stabilita analizzando gli stessi campioni su tre diversi giorni. La riproducibilità da lotto a lotto è stata stabilita analizzando i medesimi campioni utilizzando tre diversi numeri di lotto in un giorno. La riproducibilità da campione a campione è stata stabilita analizzando tre repliche di un campione in un giorno. Per ciascun campione, sono stati registrati i modelli di segnale di 100 cellule interfase ed è stata calcolata la percentuale di cellule con il modello di segnale atteso.

La riproducibilità e la precisione sono state calcolate come Deviazione Standard (STDEV) tra repliche per ciascuna variabile e STDEV media generale.

Tavola 4. Riproducibilità e precisione per FIP1L1/CHIC2/PDGFRA Deletion/Fusion Probe

Variabile	Deviazione standard (STDEV)
Precisione	0,38
Da campione a campione	0,38
Da giorno a giorno	0,38
Da lotto a lotto	0,38
Deviazione generale	0,54

Prestazione clinica

La prestazione clinica è stata stabilita su un campione rappresentativo della popolazione attesa per il prodotto. Per ciascun campione, sono stati registrati modelli di segnale di ≥100 cellule interfase. Una determinazione normale/anormale è stata effettuata comparando la percentuale di cellule con il modello di segnale anormale specifico per il valore normale di cut off. I risultati sono stati quindi comparati con lo stato noto del campione.

I risultati dei dati clinici sono stati analizzati al fine di produrre sensibilità, specificità e valori di cut off utilizzando un approccio unidimensionale.

Tavola 5. Prestazione clinica per FIP1L1/CHIC2/PDGFRA Deletion/Fusion Probe

Variabile	Risultato
Sensibilità clinica (tasso di veri positivi, TPR)	100%
Specificità clinica (tasso di veri negativi, TNR)	100%
Tasso di falsi positivi (FPR) = 1 - Specificità	0%

Informazioni aggiuntive

Per informazioni aggiuntive sul prodotto contattare il Dipartimento di Assistenza Tecnica CytoCell.

T: +44 (0)1223 294048

E-mail: techsupport@cytocell.com

Sito web: www.ogt.com

Bibliografia

- Swerdlow et al., (eds.) WHO Classification of Tumours of Haematopoietic and Lymphoid Tissue, Lyon, France, 4th edition, IARC,2017
- 2. Cools J et al., N Eng J Med 2003;348:1201-14
- 3. Arsham, MS., Barch, MJ. and Lawce HJ. (eds.) (2017) The AGT
- Cytogenetics Laboratory Manual. New Jersey: John Wiley & Sons Inc.
 Mascarello JT, Hirsch B, Kearney HM, et al. Section E9 of the American College of Medical Genetics technical standards and guidelines: fluorescence in situ hybridization. Genet Med. 2011;13(7):667-675.
- Wiktor AE, Dyke DLV, Stupca PJ, Ketterling RP, Thorland EC, Shearer BM, Fink SR, Stockero KJ, Majorowicz JR, Dewald GW. Preclinical validation of fluorescence in situ hybridization assays for clinical practice. Genetics in Medicine. 2006;8(1):16–23.

Guida ai simboli

RIF	it: Riferimento di catalogo
IVD	it: Dispositivo medico-diagnostico in vitro
LOT	it: Codice di lotto
[]i	it: Consultare le istruzioni per l'uso
	it: Fabbricante
\sum	it: Utilizzare entro
-25°C	it: Limiti di temperatura
*	it: Tenere lontano dalla luce solare.
Σ	it: Contenuto per <n> test</n>
CONT	it: Contenuto

Brevetto e marchi registrati

CytoCell è un marchio registrato di Cytocell Ltd.

Cytocell Ltd.

Oxford Gene Technology,
418 Cambridge Science Park,
Milton Road,
Cambridge, CB4 0PZ, Regno Unito
T: +44(0)1223 294048
F: +44(0)1223 294986
E-mail: probes@cytocell.com

E-mail: probes@cytocell.com Sito web: www.ogt.com