The analysis of myeloproliferative neoplasm samples using a rapid hybridisation-based (30 minute) enrichment protocol for Next-Generation Sequencing (NGS)

Lyudmila Georgieva¹, Ezam Uddin¹, Jacqueline Chan¹, and <u>Graham Speight¹</u>

Oxford Gene Technology (OGT), Oxford, UK.

Introduction

- Myeloproliferative neoplasms (MPNs) are a group of diseases that affect blood cell production in the bone marrow resulting in the overproduction of one or more cell types.
- The application of short read Next-Generation Sequencing (NGS) for research into MPNs has been held back by the accurate and timely analysis of the key MPN driver mutations. These include: *JAK*2 V617F and exon 12, *MPL* W515K/L and S505N, and *CALR* exon 9 insertion and deletions (up to 52 bp).
- Designed for research into the diagnosis, aetiology and prognosis of MPNs, the SureSeq[™] Core MPN Panel has been developed by OGT in collaboration with recognised cancer experts to deliver accurate detection (down to 1% variant allele fraction [VAF]) of somatic variants of these key MPN driver mutations.
- The aim of this study is to evaluate the SureSeq[™] Core MPN Panel in conjunction with the new streamlined 1-day hybridisation-based NGS library preparation kit (LPK).

Methods

Preparation of purified DNA to sequencer-ready libraries in 7 hours and 45 minutes

- An enhanced version of the SureSeq™ Library Preparation Kit (LPK) was utilised which incorporates an enzymatic DNA fragmentation in combination with a rapid hybridisation of just 30 minutes.
- This enhanced protocol reduces the overall processing time by 6 hours, resulting in a streamlined, 1-day workflow that permits the preparation of purified DNA samples to Illumina sequencer ready libraries in a single-day.
- The kit offers a similar turn-around time to amplicon-based enrichment protocols, without the associated disadvantages, such as PCR bias, allelic bias (indels) and drop-outs, as well as poor uniformity of coverage.
- The SureSeq[™] Core MPN Panel was used for hybridisation-based capture. This panel contains baits for *JAK2* exons 12 and 14, *MPL* exon 10, and *CALR* exon 9.

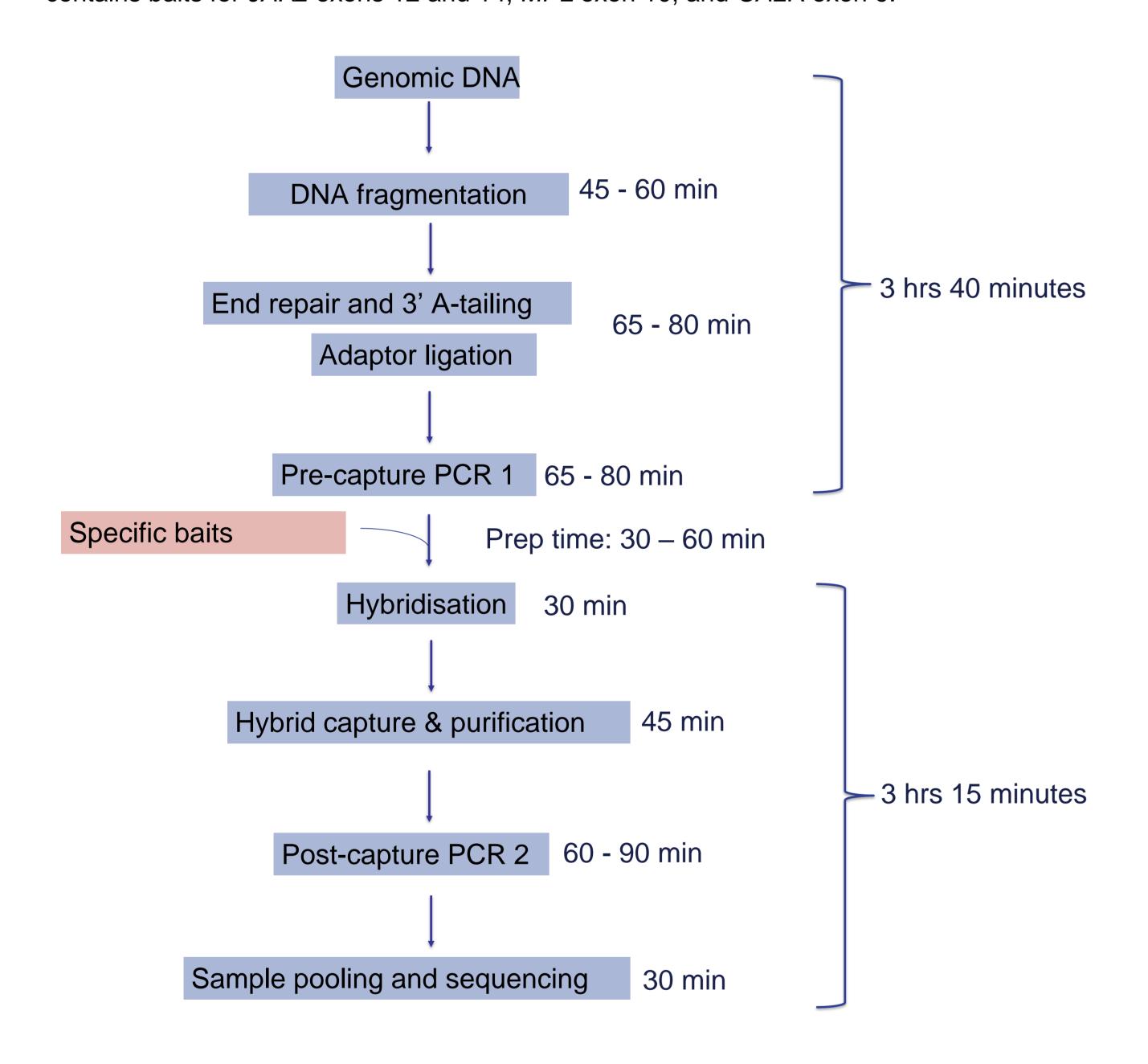


Figure 1: Workflow of SureSeq NGS library preparation, from DNA to sequencer.

Panel content

• The SureSeq Core MPN Panel covers specific sites of MPN research relevance in 3 genes: JAK2 (V617F and exon 12), MPL (W515K/L/R/A and S505N) and CALR (exon 9).

Study design

- The SureSeq Core MPN Panel was validated using the *JAK2* V617F Genotyping Sensitivity Panel provided by the National Institute for Biological Standards and Control (NIBSC) in order to confirm the lower levels of analytical detection and confidence.
- The panel was also used to confirm a broader set of variants in 14 research samples (provided by the National Genetics Reference Laboratories Wessex, UK) containing variants for each of the targeted regions. Sequencing was conducted on a MiSeq® using a V2 300 bp cartridge (Illumina).

Conclusions

- We have successfully utilised the OGT 1-day hybridisation-based SureSeq LPK protocol in combination with the SureSeq Core MPN Panel to reliably and confidently detect somatic SNVs by NGS down to a 1% VAF.
- The uniformity of coverage of this approach permitted the detection of key *CALR* and *JAK2* indels (including 52 bp deletions and 5 bp insertions) to be identified.
- This enhanced protocol incorporates an enzymatic fragmentation which permits the high-throughput preparation of 48 samples from genomic DNA to sequencer in a 1-day workflow.
- To achieve >1000x de-duplicated depth (required for confident detection of 1% VAF), 48 samples can be reliably sequenced in a single MiSeq (V2 300 bp) run. This allows the generation of high quality data in a cost effective and timely manner.

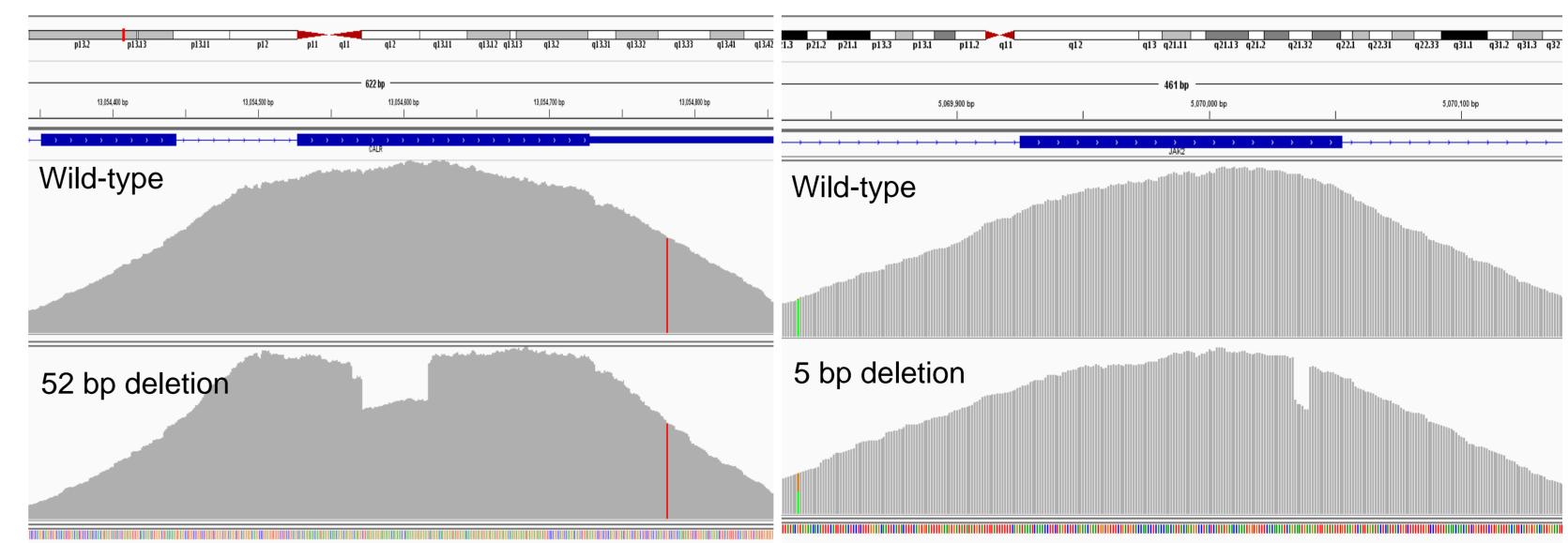
Results

Sensitive and reproducible variant detection even in heterogeneous samples

- Heterogeneous cancer samples pose significant challenges for researchers as alleles are likely to be present at
 a lower fraction than what would be expected for standard germline variants. Samples also typically contain a
 mixture of cancer and normal cells; moreover, cancer can consist of several molecularly distinct clones. In order
 to detect alleles that contribute only a small percentage to the reads at any locus, a highly uniform and sensitive
 enrichment is required.
- The SureSeq Core MPN Panel has been validated with samples from the NIBSC and have been shown to accurately detect alleles down to a 1% VAF in *JAK*2 (V617F) at a read depth of >1000x (Table 1).

NIBSC JAK2 V617F Sample	% VAF	Wild type reads	Variant reads
10%	13.1	1038	157
5%	4.6	1623	78
1%	1.0	2172	23
0.1%	0.4	2414	9
0%	0.0	2555	1

Table 1: Data generated from a 48 sample run on an Illumina MiSeq. The SureSeq Core MPN Panel permitted the detection of alleles at 1% VAF with high confidence.


Evaluation of the Core MPN Panel and enhanced LPK protocol with 14 research samples

- Data presented here are from 14 research samples (2 wild-type controls) that were processed using the enhanced LPK in combination with the Core MPN panel.
- See below (Table 2) for the range of variants and MAFs detected from 14 research samples. These include SNVs as well as 5 bp insertions in *JAK2* (exon 12) and deletions of up to 52 bp in *CALR* (exon 9) (Table 2). No variants were identified in the control samples.

#	Gene	Variant	Mean target coverage	% VAF
1	CALR	K385NfsTer47 (5 bp insertion in exon 9 CALR)	3640	37.3
2	JAK2	V617F	1263	10.7
3	JAK2	V617F	1352	9.8
4		No variant detected	2655	
5	MPL	W515R	2750	18.1
6	JAK2	V617F	2971	2.7
7	JAK2	V536F537insFHKIRNEDLIL (33 bp insertion in exon 12 JAK2)	1574	3.1
8	CALR	K385NfsTer47	2321	42.8
9	JAK2	N542E543del	1749	29.9
10	CALR	L367WfsTer46 (52 bp deletion exon 9 CALR)	947	16.3
11	MPL	W515L	1421	60.7
12	MPL	W515L	903	3.8
13	CALR	K385NfsTer47 (5 bp ins in exon 9 CALR)	1265	14.0
14		No variant detected	3234	

Table 2: Data generated using the SureSeq Core MPN Panel in combination with the enhanced LPK was 100% concordant with independent findings (National Genetics Reference Laboratory – Wessex, UK).

The Core MPN panel in combination with the enhanced workflow is able to reliably detect single nucleotide variants (SNVs) as well as insertions (5 bp insertion in *JAK2* exon 12 and *CALR* exon 9) and deletions (5 bp deletion exon 12 *JAK2* and 52 bp deletion *CALR* exon 9) (see below).

Figure 2: Detection of a 52 bp deletion (exon 9 *CALR*). Wild-type sample (top panel) is compared to a 52 bp somatic deletion (bottom panel).

Figure 3: Detection of a 5 bp deletion (exon 12 *JAK2*). Wild-type sample (top panel) is compared to a 5 bp somatic deletion (bottom panel).

Acknowledgements

We would like to thank Prof. Nick Cross (National Genetics Reference Laboratories - Wessex, UK) for providing the validated research samples.