Beyond FISH, SNVs and indels – improved resolution of translocation detection using next generation sequencing (NGS)

Oxford Gene Technology (OGT), Begbroke Science Park, Begbroke Hill, Woodstock Road, Begbroke, Oxford, UK

Introduction

Karyotyping, FISH, RT-PCR and microarrays are currently considered to be the gold standard techniques for structural variant discovery and detection. However, there is a desire to combine analysis of large structural alterations such as translocations alongside smaller mutations such as SNVs and indels. With development of newer technologies such as NGS for DNA- and RNAsequencing, simultaneous discovery of multiple mutation types is now possible, enabling development of more comprehensive assays.

Chronic myeloid leukaemia (CML) is a myeloproliferative neoplasm with incidence of 1 to 2 per 100,000 and constitutes 15-20 % of adult leukaemias¹. CML is characterised by the Philadelphia chromosome (Ph), resulting from the t(9;22)(q34;q11) balanced reciprocal translocation. The translocation generates the BCR-ABL1 fusion gene encoding the BCR-ABL1 protein with constitutive kinase and oncogenic activity^{1,2}. The breakpoints in the *ABL1* gene lie in 90 kb long intron 1, upstream of the ABL1 tyrosine kinase domains encoded in exons 2 to 11. The breakpoints within BCR are mapped to a 3.1 kb area spanning exons 13 to 15, the major breakpoint cluster region (M-bcr), found in 90% of CML and 20 to 30% of cases with Ph-positive B-cell acute lymphoblastic leukaemia (Ph+ B-ALL)³.

In this study, we tested the capability of a SureSeq myPanel[™] NGS Custom Cancer Panel to detect known t(9;22)(q34;q11) translocations.

Study design

We utilised a SureSeq myPanel NGS Custom panel and associated library preparation kit* to determine whether this approach can be used for detection of the t(9;22)(q34;q11) translocation.

We used a hybridisation-based enrichment approach to test characterised DNA samples, CML cell lines K562, KU-812, MOLM-1 and JK-1, and 3 research samples** with breakpoints occurring across multiple positions in the major breakpoint area of BCR (exons 13-15) (Figure 2).

To mimic the BCR-ABL1 translocation with different frequencies we made a serial dilution of cell line K562 in order to create translocation carriers with frequency range 0 - 100%. Sequencing was conducted using a V2 300 bp cartridge (Illumina).

Data was analysed using OGT's proprietary translocation detection software.

Figure 2: Translocation breakpoint clusters in BCR and ABL1 genes.

Oxford Gene Technology, Begbroke Science Park, Begbroke, Oxfordshire OX5 1PF, United Kingdom. For further information, email: contact@ogt.com or visit: www.ogt.com SureSeq: For Research Use Only; Not for Diagnostic Procedures. This document and its contents are © Oxford Gene Technology IP Limited – 2018. All rights reserved. OGT[™] and SureSeq[™] are trademarks of Oxford Gene Technology IP Limited. *The SureSeq NGS Library Preparation Kit was jointly developed between Oxford Gene Technology and Bioline Reagents Limited.

Lyudmila Georgieva, Ezam Uddin, Aysel Heckel, Jacqueline Chan, James Reid, Jolyon Holdstock, David Cook and Graham Speight

Results

We have achieved high depth (>1000x) and uniformity of coverage across the targeted regions which enabled successful detection of all translocation events.

Figure 3: Excellent uniformity of coverage of the BCR, exon 13-15 region, generated with OGT SureSeq protocol averaging ~1500x deduplicated coverage. Depth of coverage per base (grey). Target region (green). Repeat regions (pink).

Prediction and confirmation of translocation breakpoints in CML cell lines

Using the OGT workflow we were able to reliably detect *BCR-ABL1* translocations in 4 CML cell lines. For all cell lines, predicted breakpoints were found to match the coordinates reported in the literature⁴ (Table 1, Figure 4).

Sample Number	Sample Name	BCR read value	ABL1 read value	BCR breakpoint location (chr22)	ABL1 breakpoint location (chr9)	P value
1	K562	1274	4041	23, 632, 742	133, 607, 145	<10-150
2	MOLM-1	1320	115	23, 631, 909	133, 643, 072	5.26x10 ⁻²
3	KU-812	727	186	23, 632, 850/23, 632, 613	133, 643, 198/133, 597, 361	3.00x10 ⁻⁷⁶
4	JK-1	2104	265	23, 632, 390/23, 632, 389	133, 628, 935/133, 628, 932	5.16x10 ⁻¹⁹

Table 1: Accurate detection of BCR-ABL1 translocations by early stage software (in development). Read values are a formulation of read depth, not true read depth.

Figure 4: BCR-ABL1 translocation detection in K562 A, MOLM-1 B, KU-812 C and JK-1 D cell lines.

Both BCR-ABL1 and ABL1-BCR translocations were detected. BCR/ABL1 : chr22 : 23,632,390 / chr9 : 133,628,935; ABL1/BCR: chr9 :133,628,932 / chr22 : 23,632,389.

Confident detection of a BCR-ABL1 fusion event was reported at frequencies as low as 5%.

Evaluation of the BCR-ABL1 fusion detection panel in research samples

Data presented here (Table 3) are from 3 research samples from carriers of a BCR-ABL1 translocation generated using the OGT workflow. For all samples the predicted breakpoints were found to be 100% concordant with independent findings (West Midlands Regional Genetics Laboratory, Birmingham – UK).

Sample Number	BCR read value	ABL1 read value	BCR breakpoint location (chr22)	ABL1 breakpoint location (chr9)	P value
1	577	100	23, 634, 130	133, 607, 145	3.15x10 ⁻¹⁹
2	511	103	23, 633, 828	133, 717, 546/	2.18x10 ⁻²⁷
3	435	95	23, 634, 596	133, 730, 109	9.95x10 ⁻³⁰

Table 3: Accurate detection of BCR-ABL1 translocations. Using the OGT workflow we were able to reliably detect BCR-ABL1 translocations with different breakpoint locations and frequency in all samples by early stage software (in development). Read values are a formulation of read depth, not true read depth

Conclusions

- ABL1 translocations.
- and could be adapted for a number of different applications in future.

References

- 1. Sessions J: Chronic myeloid leukemia in 2007. Am J Health Syst Pharm 2007, 64:S4-9
- 2. Quintas-Cardama A, Cortes J: Molecular biology of bcr-abl1-positive chronic myeloid leukemia. Blood 2009, 113:1619-1630. 3. Wong S, Witte ON: The BCR-ABL story: bench to bedside and back. Annu Rev Immunol 2004, 22:247-306

Acknowledgements

Cytogenet 2009, 189:138-139.

**Samples kindly provided by West Midlands Regional Genetic Laboratory - Birmingham, UK.

This data (Figure 5, Table 2) is based on a serial dilution of DNA from K562 cell line in order to create BCR-ABL1 translocation carriers with frequencies of 0 - 100%.

dilution	('
0	
5	
10	
20	
30	
60	
80	
100	

Expected frequency (%)	BCR read value	ABL1 read value	P value
100	4041	1274	<10-150
80	3260	1033	<10-150
60	2888	920	<10 ⁻¹⁵⁰
30	1768	545	<10-150
20	1319	380	2.4x10 ⁻¹³³
10	678	166	9.6x10 ⁻⁵²
5	462	74	4.9x10 ⁻⁸
0	378	1	0.99

Table 2.

Figure 5, Table 2: Accurate and reproducible detection of BCR-ABL1 translocation in K562 cell line (BCR breakpoint location chr22:23632742, ABL1 breakpoint location chr9:133607147) with a range of frequencies. Read values are a formulation of read depth, not true read depth.

• We have successfully utilised the OGT hybridisation-based SureSeq protocol in combination with a SureSeq myPanel NGS Custom panel to reliably detect somatic BCR-

• The uniformity of coverage of this approach permitted the detection of known BCR-ABL1 translocations with different breakpoint locations down to a 5% frequency.

• Alongside suitable software, this approach can be used for detection of multiple types of mutations in a single assay, including a combination of SNVs, indels and translocations;

4. Ross DM, Schafranek L, Hughes TP, Nicola M, Branford S, Score J: Genomic translocation breakpoint sequences are conserved in BCR-ABL1 cell lines despite the presence of amplification. Cancer Genet