

Gebrauchsanweisung (IFU)

REF: CE-LPH 039-S / CE-LPH 039

CKS1B/CDKN2C (P18) Amplification/Deletion Probe

NUR FÜR DEN PROFESSIONELLEN GEBRAUCH

Weitere Informationen und andere Sprachen erhältlich unter ogt.com/ IFU

Verwendungszweck

Die CytoCell® CKS1B/CDKN2C (P18) Amplification/Deletion Probe ist ein hochwertiger, nicht automatisierter Fluoreszenz-in-situ-Hybridisierungstest (FISH) zum Nachweis von chromosomalen Zugewinnen und Deletionen in den Regionen 1p32.3 und 1q21 auf Chromosom 1 in mit Carnoy'scher Lösung (3:1 Methanol/Essigsäure) fixierten, hämatologisch gewonnenen Zellsuspensionen von Patienten mit bestätigtem oder vermutetem Multiplem Myelom (MM).

Gebrauchshinweise

Dieses Produkt wurde als Ergänzung zu anderen klinischen und histopathologischen Tests in anerkannten diagnostischen und klinischen Versorgungspfaden konzipiert, bei denen die Kenntnis des CKS1B oder CDKN2C (P18) Status für das klinische Management relevant wäre.

Einschränkungen

Dieses Produkt wurde entwickelt, um genomische Zugewinne oder Verluste zu erkennen, die größer sind als die Region, die von den roten und grünen Klonen in diesem Sondenset abgedeckt wird, diese umfasst auch die Regionen CKS1B und CDKN2C (P18). Genomische Zugewinne oder Verluste außerhalb dieser Regionen oder partielle Zugewinne oder Verluste dieser Region können mit diesem Produkt nicht erkannt werden.

Dieses Produkt ist nicht für die eigenständige Diagnostik, begleitende Diagnostik, Pränataldiagnostik, das populationsbasierte Screening, patientennahe Untersuchungen oder Selbsttests geeignet.
Dieses Produkt wurde ausschließlich für die Probentypen, Krankheitstypen oder

Zwecke validiert, die unter "Verwendungszweck" aufgeführt sind.

Es ist als Ergänzung zu anderen diagnostischen Labortests gedacht und es sollten nicht allein aufgrund des FISH-Ergebnisses therapeutische Maßnahmen eingeleitet werden.

Die Meldung und Auslegung der FISH-Ergebnisse sollte von entsprechend geschultem Personal durchgeführt werden, den professionellen Praxisstandards entsprechen und weitere relevante Testergebnisse sowie klinische und diagnostische Informationen berücksichtigen.

Dieses Produkt ist nur für den professionellen Gebrauch im Labor vorgesehen. Die Nichteinhaltung des Protokolls kann sich nachteilig auf die Leistung auswirken und zu falsch positiven/negativen Ergebnissen führen.

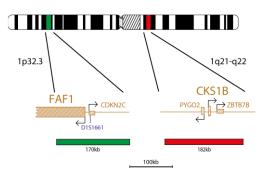
Grundprinzipien des Tests

Bei der Fluoreszenz-in-situ-Hybridisierung (FISH) handelt es sich um eine Technik, die es ermöglicht, DNA-Sequenzen auf Metaphase-Chromosomen oder in Interphase-Kernen in festen zytogenetischen Proben nachzuweisen. Bei dieser Technik kommen DNA-Sonden zum Einsatz, die ganze Chromosomen oder einzelne Sequenzen hybridisieren und als leistungsstarke Ergänzung zur zytogenetischen Analyse der G-Bänderung dienen. Diese Technik kann nun als wesentliches Untersuchungsinstrument bei der Chromosomenanalyse im pränatalen und hämatologischen Bereich sowie bei der Analyse von soliden Tumoren eingesetzt werden. Die Ziel-DNA steht nach Fixierung und Denaturierung

für die Bindung an eine ähnlich denaturierte, fluoreszierend markierte DNA-Sonde zur Verfügung, die eine komplementäre Sequenz aufweist. Nach der Hybridisierung wird die ungebundene und unspezifisch gebundene DNA-Sonde entfernt und zwecks Visualisierung eine Gegenfärbung der DNA vorgenommen. Mittels Fluoreszenzmikroskopie wird dann die hybridisierte Sonde im Zielmaterial visualisiert.

Informationen zur Sonde

Das CKS1B-Gen (regulatorische CDC28 Protein-Kinase Untereinheit 1B) befindet sich an 1q21 und das CDKN2C-Gen (cyclinabhängiger Kinaseinhibitor 2C) befindet sich an 1p32.3.


Ein Zugewinn der 1q21-Region einschließlich CKS1B ist eine der am häufigsten auftretenden chromosomalen Aberrationen beim Multiplen Myelom¹. Die Überexpression des CKS1B-Gens reguliert die Progression des Zellzyklus, was zu einer proliferativeren Erkrankung führt². Dies hängt mit dem fortgeschrittenen Phänotyp des Multiplen Myeloms zusammen und kann daher mit einer schlechten Prognose und dem Fortschreiten der Erkrankung in Zusammenhang stehen^{1,2,3}. Ein Zugewinn von 1q21 wurde mit einer geringeren Überlebensrate in Verbindung gebracht und bei einem Krankheitsrückfall wird eine weitere Amplifikation beobachtet. Vollständige Zugewinne des langen Arms von Chromosom 1 sind auch beim Multiplen Myelom häufig und können als Isochromosomen, Duplikationen oder springende Translokationen auftreten, sie werden häufig mit einer Krankheitsprogression in Verbindung gebracht⁴.

CDKN2C ist ein Tumorsuppressorgen, das für die Veranlassung des apoptoischen Zelltods und der DNA-Fragmentierung zuständig ist⁵. Beim Multiplen Myelom wird es durch die Expression des Zytokins IL-6 hochreguliert und die homozygote Deletion des Gens ist mit einer proliferativeren Erkrankung verbunden⁵. Obwohl CDKN2C-Deletionen bei malignen Erkrankungen beim Menschen selten beobachtet wurden, haben zytogenetische Analysen gezeigt, dass Anomalien von 1p32-36 bei etwa 16 % aller Multiplen Myelome beim Menschen zu finden sind und mit einem schlechteren Gesamtüberleben zusammenhängen^{2,3,5,6}

Zytogenetische Anomalien werden bei etwa einem Drittel der Multiplen Myelome mittels konventioneller Zytogenetik nachgewiesen, mit FISH steigt der Anteil der nachgewiesenen Chromosomenanomalien jedoch auf > 90 %7.

Spezifikation der Sonde

CKS1B, 1q21-q22, rot CDKN2C (P18), 1p32.3, grün

Das CKS1B/CDKN2C-Produkt besteht aus einer rot markierten 182kb-Sonde, welche das gesamte CKS1B-Gen und die angrenzenden Regionen abdeckt, einschließlich der PYGO2- und ZBTB7B-Gene, sowie einer grünen Sonde, welche eine 170kb-Region abdeckt, die das gesamte CDKN2C-Gen, den D1S1661-Marker und das centromerische Ende des FAF1-Gens beinhaltet.

Bereitgestelltes Material

Sonde: 50 µl pro Ampulle (5 Tests) oder 100 µl pro Ampulle (10 Tests)

Die Sonden werden in Hybridisierungslösung (< 65 % Formamid, < 20 mg Dextransulfat, < 10 % des 20X Salz-Natriumcitrat (SSC)) vorgemischt bereitgestellt und sind gebrauchsfertig.

Gegenfärbung: 150 µl pro Ampulle (15 Tests)

Für die Gegenfärbung wird DAPI Antifade ES verwendet (0,125 µg/ml DAPI (4,6-Diamidino-2-Phenylindol) in Glycerol-basiertem Fixiermittel).

Warn- und Sicherheitshinweise

- Nur für den Einsatz in der In-vitro-Diagnostik. Nur für den professionellen Gebrauch im Labor.
- Sondenmixturen enthalten Formamid, dabei handelt es sich um ein Teratogen. Dämpfe nicht einatmen und Hautkontakt vermeiden. Gehen Sie vorsichtig vor; tragen Sie Handschuhe und einen Laborkittel.
- Gehen Sie beim Umgang mit DAPI vorsichtig vor; tragen Sie Handschuhe und einen Laborkittel.
- Verwenden Sie keine Ampulle/n, die auf irgendeine Weise beschädigt oder kompromittiert ist.
- Hinweise zur sicheren Entsorgung dieses Produkts finden Sie in den für Ihren Standort geltenden örtlichen Entsorgungsvorschriften sowie den Empfehlungen im Sicherheitsdatenblatt. Dies gilt auch für beschädigte Testkit-

- 6. Entsorgen Sie alle gebrauchten Reagenzien und alle anderen kontaminierten Einwegmaterialien gemäß den Verfahren für infektiösen oder potenziell infektiösen Abfall. Es liegt in der Verantwortung jedes Labors, feste und flüssige Abfälle entsprechend ihrer Art und ihrem Gefährlichkeitsgrad zu handhaben und sie gemäß den geltenden Vorschriften zu behandeln und zu entsorgen (oder behandeln und entsorgen zu lassen).
- Die Nutzer müssen in der Lage sein, zwischen den Farben Rot, Blau und Grün zu unterscheiden.
- Die Nichteinhaltung des vorgegebenen Protokolls oder die Nichtnutzung der Reagenzien kann sich nachteilig auf die Leistung auswirken und zu falsch positiven/negativen Ergebnissen führen.
- Die Sondenflüssigkeit sollte nicht verdünnt oder mit anderen Sondenflüssigkeiten gemischt werden.
- Werden während der Prä-Denaturierungsphase nicht 10 μl der Sonde benutzt, so kann sich das nachteilig auf die Leistung auswirken und zu falsch positiven/negativen Ergebnissen führen.
- 1. Alle Produkte sind vor dem Gebrauch zu validieren.
- Es sollten interne Kontrollen an den nicht betroffenen Zellpopulationen der Testproben durchgeführt werden.

Temperaturdefinitionen

-20 °C / Gefroren / Im Gefrierschrank: -25 °C bis -15 °C
 37 °C: +37 °C ± 1 °C
 72 °C: +72 °C ± 1 °C
 75 °C: +75 °C ± 1 °C
 Raumtemperatur (RT): +15 °C bis +25 °C

Lagerung und Handhabung

7-15°C Das Kit ist bei Temperaturen zwischen -25°C und -15°C in einem Gefrierschrank aufzubewahren, bis das Ablaufdatum, das auf dem Etikett des Kits angegeben ist, erreicht wurde. Die

Sonde und die Ampullen mit der Gegenfärbung sind im Dunkeln zu lagern.

Die FISH-Sonde, DAPI-Antifade-ES-Gegenfärbelösung und Hybridisierungslösung bleiben während der Frost-Tau-Zyklen, die im regulären Gebrauch auftreten, stabil (dabei besteht ein Zyklus jeweils aus der Entnahme der Ampulle aus dem Gefrierschrank und dem Austausch der Ampulle im Gefrierschrank) – 5 Zyklen für die 50-µI-Ampulle der FISH-

Sonde (5 Tests), 10 Zyklen für die 100-µl-Ampulle der FISH-Sonde (10 Tests) und 15 Zyklen für die 150-µl-Ampulle der Gegenfärbelösung (15 Tests). Die Lichteinstrahlung sollte minimiert, und wenn möglich vermieden werden. Lagern Sie die Komponenten in dem mitgelieferten lichtdichten Behälter. Komponenten, die unter anderen als den auf dem Etikett angegebenen Bedingungen verwendet und gelagert werden, funktionieren möglicherweise nicht wie erwartet und können die Testergebnisse negativ beeinflussen. Es müssen alle Anstrengungen unternommen werden, um die Exposition gegenüber Licht- und Temperaturschwankungen zu begrenzen.

Benötigte Geräte und Materialien, die nicht zum Lieferumfang gehören

Es müssen kalibrierte Geräte verwendet werden:

- Heizplatte (mit einer festen Platte und einer präzisen Temperaturregelung bis 80 °C)
- 2. Kalibrierte Mikropipetten und Spitzen mit variablem Volumen von 1 μl 200 μl
- 3. Wasserbad mit präziser Temperaturregelung bei 37 °C und 72 °C
- 4. Mikrozentrifugenröhrchen (0,5 ml)
- Fluoreszenzmikroskop (bitte beachten Sie dazu den Abschnitt "Empfehlungen zum Fluoreszenzmikroskop")
- 6. Phasenkontrastmikroskop
- 7. Saubere Coplin-Gefäße aus Kunststoff, Keramik oder hitzebeständigem Glas
- 8. Pinzette
- Kalibriertes pH-Messgerät (oder pH-Indikatorstreifen für die Messung von pH-Werten zwischen 6,5 – 8,0)
- Befeuchteter Behälter
- 11. Immersionsöl für das Objektiv des Fluoreszenz-Mikroskops
- 12. Laborzentrifuge
- Objektträger
- 14. 24 x 24 mm Deckgläser
- 15. Zeitmesser
- 16. 37 °C Inkubator
- 17. Kleber auf Gummibasis
- 18. Vortexmischer
- 19. Messzylinder
- 20. Magnetrührer
- 21. Kalibriertes Thermometer

Optionale Ausrüstung, die nicht zum Lieferumfang gehört

1. Zytogenetische Trocknungskammer

Benötigte Reagenzien, die nicht zum Lieferumfang gehören

- 20x Kochsalz-Natriumcitrat-(SSC-)Lösung
- 2. 100 % Ethanol
- 3. Tween-20
- 4. 1M Natriumhydroxid (NaOH)
- 5. 1M Salzsäure (HCI)
- Destilliertes Wasser

Empfehlungen zum Fluoreszenzmikroskop

Benutzen Sie eine 100 Watt Quecksilberlampe oder eine gleichwertige Lampe sowie 60/63x oder 100x Plan-Apochromate-Objektive für eine optimale Visualisierung. Die Fluorophore, die in diesem Sondenset verwendet werden, werden bei folgenden Wellenlängen angeregt und emittiert:

Fluorophor	Max. Erregung [nm]	Max. Aussendung [nm]
Grün	495	521
Rot	596	615

Achten Sie auf eine angemessene Anregung und stellen Sie sicher, dass das Mikroskop mit Emissionsfiltern ausgestattet ist, welche die oben aufgeführten Wellenlängen abdecken. Verwenden Sie einen dreifachen Bandfilter DAPI/grünes Spektrum/rotes Spektrum oder einen zweifachen Bandfilter grünes Spektrum/rotes Spektrum, um eine optimale gleichzeitige Visualisierung der grünen und roten Fluorophore zu gewährleisten.

Überprüfen Sie das Fluoreszenzmikroskop vor dem Gebrauch, um sich von seiner einwandfreien Funktion zu überzeugen. Verwenden Sie Immersionsöl, das für die Fluoreszenzmikroskopie geeignet ist und aufgrund seiner Formulierung eine geringe Autofluoreszenz aufweist. Mischen Sie DAPI-Antifade nicht mit Mikroskop-Immersionsöl, da dadurch die Signale verdeckt werden können. Befolgen Sie hinsichtlich der Lebensdauer der Lampe und der Anwendungsdauer der Filter die Empfehlungen der Hersteller.

Vorbereitung der Probe

Das Kit ist für den Einsatz auf hämatologisch gewonnenen Zellsuspensionen konzipiert, die mit Carnoy'scher Lösung (3:1 Methanol/Essigsäure) fixiert sind und nach den Richtlinien des Labors oder des Instituts vorbereitet werden. Bereiten Sie lufttrocknende Proben nach den zytogenetischen Standardverfahren auf Objektträgern vor. Das AGT *Cytogenetics Laboratory Manual* enthält Empfehlungen für die Sammlung, Kultivierung und Entnahme von Proben sowie die Präparation der Objektträger⁹.

Vorbereitung der Lösung Ethanollösungen

Verdünnen Sie 100 % Ethanol unter Berücksichtigung der folgenden Mischverhältnisse mit destilliertem Wasser und mischen Sie die Lösung gründlich

- 70 % Ethanol 7 Teile 100 % Ethanol auf 3 Teile destilliertes Wasser
- 85 % Ethanol 8,5 Teile 100 % Ethanol auf 1,5 Teile destilliertes Wasser Lagern Sie die Lösung bis zu 6 Monate bei Raumtemperatur in einem luftdichten Behälter.

2x SSC Lösuna

Verdünnen Sie 1 Teil 20x SSC Lösung mit 9 Teilen destilliertem Wasser und mischen Sie die Lösung gründlich durch. Messen Sie den pH-Wert und korrigieren Sie diesen nach Bedarf mit NaOH oder HCl auf einen pH-Wert von 7,0. Lagern Sie die Lösung bis zu 4 Wochen bei Raumtemperatur in einem luftdichten Behälter.

0,4x SSC Lösung

Verdünnen Sie 1 Teil 20x SSC Lösung mit 49 Teilen destilliertem Wasser und mischen Sie die Lösung gründlich durch. Messen Sie den pH-Wert und korrigieren Sie diesen nach Bedarf mit NaOH oder HCl auf einen pH-Wert von 7,0. Lagern Sie die Lösung bis zu 4 Wochen bei Raumtemperatur in einem luftdichten Behälter.

2x SSC, 0,05 % Tween-20-Lösung

Verdünnen Sie 1 Teil 20x SSC Lösung mit 9 Teilen destilliertem Wasser. Fügen Sie 5 µl Tween-20 auf 10 ml hinzu und mischen Sie die Lösung gründlich durch. Messen Sie den pH-Wert und korrigieren Sie diesen nach Bedarf mit NaOH oder HCl auf einen pH-Wert von 7,0. Lagern Sie die Lösung bis zu 4 Wochen bei Raumtemperatur in einem luftdichten Behälter.

FISH-Protokoll

(Hinweis: Stellen Sie sicher, dass die Exposition der Sonde und der Gegenfärbelösung gegenüber den Laborlampen stets begrenzt ist.)

Vorbereitung des Objektträgers

- Leuchten Sie die Zellprobe auf einem Objektträger aus Glas aus. Lassen Sie den Objektträger trocknen. (Optional, bei Verwendung einer zytogenetischen Trocknungskammer: Die Kammer sollte bei etwa 25 °C und 50 % Luftfeuchtigkeit betrieben werden, um eine optimale Ausleuchtung der Zellproben sicherzustellen. Steht keine zytogenetische Trocknungskammer zur Verfügung, so kann alternativ auch ein Dunstabzug verwendet werden.)
- Tauchen Sie den Objektträger 2 Minuten lang bei Raumtemperatur (RT) in 2x SSC, ohne die Lösung dabei zu schütteln.
- In einer Ethanolserie (70 %, 85 % und 100 %) jeweils 2 Minuten bei RT dehydrieren.
- 4. Lassen Sie den Objektträger trocknen.

Prä-Denaturierung

- Entnehmen Sie die Sonde aus dem Gefrierschrank und erwärmen Sie diese auf RT. Die Röhrchen vor dem Gebrauch kurz zentrifugieren.
- Stellen Sie sicher, dass die Sondenlösung mit einer Pipette gleichmäßig durchgemischt wird.
- Platzieren Sie die Sonde und den Objektträger mit der Probe zum Vorwärmen 5 Minuten lang auf einer Heizplatte mit einer Temperatur von 37 °C (+/- 1 °C).
- 7. Tröpfeln Sie 10 µl des Sondengemischs auf die Zellprobe und setzen Sie vorsichtig ein Deckglas darauf. Verschließen Sie das Gefäß mit Kleber auf Gummibasis und lassen Sie den Kleber vollständig trocknen.

Denaturierung

10. Denaturieren Sie die Probe und die Sonde gleichzeitig, indem Sie den Objektträger 2 Minuten lang auf einer Heizplatte auf eine Temperatur von 75 °C (+/- 1 °C) erhitzen.

Hybridisierung

11. Platzieren Sie den Objektträger über Nacht in einem feuchten, luftdichten Behälter bei einer Temperatur von 37 °C (+/- 1 °C).

Spülgänge nach der Hybridisierung

- 12. Entnehmen Sie die DAPI-Lösung aus dem Gefrierschrank und erwärmen Sie diese auf RT.
- 13. Nehmen Sie das Deckglas ab und entfernen Sie vorsichtig etwaige Kleberrückstände.
- Tauchen Sie den Objektträger 2 Minuten lang bei einer Temperatur von 72 °C +/- 1 °C) ohne Schütteln in 0,4x SSC (pH 7,0) ein.
- 15. Den Objektträger abtropfen lassen und bei RT (pH 7,0) 30 Sekunden lang ohne Schütteln in 2x SSC, 0,05 % Tween-20 eintauchen.
- 16. Den Objektträger trocknen lassen und 10 µl DAPI Antifade auf jede Probe aufbringen.
- 17. Ein Deckglas aufsetzen, etwaige Blasen entfernen und 10 Minuten abwarten, während sich die Farbe im Dunkeln entwickelt.
- 18. Unter einem Fluoreszenzmikroskop betrachten (bitte beachten Sie den Abschnitt Empfehlungen zum Fluoreszenzmikroskop).

Empfehlungen zur Vorgehensweise

- Die Ofenbehandlung oder Aushärtung von Objektträgern kann die Signalfluoreszenz reduzieren.
- Die Hybridisierungsbedingungen können beeinträchtigt werden, wenn andere Reagenzien als die verwendet werden, die durch Cytocell Ltd. zur Verfügung gestellt oder empfohlen werden.
- Verwenden Sie ein geeichtes Thermometer, um die Temperatur von Lösungen, Wasserbädern und Inkubatoren zu messen, da diese für eine optimale Produktleistung eine entscheidende Rolle spielen.
- Die Waschkonzentrationen, der pH-Wert und die Temperaturen sind wichtig, da eine geringe Stringenz zu einer unspezifischen Bindung der Sonde führen kann und eine zu hohe Stringenz ein fehlendes Signal verursachen kann.
- Eine unvollständige Denaturierung kann zu einem fehlenden Signal führen, eine übermäßige Denaturierung dagegen auch zu unspezifischer Bindung.
- Eine übermäßige Hybridisierung kann zu zusätzlichen oder unerwarteten Signalen führen.
- Anwender sollten das Protokoll für ihre eigenen Proben optimieren, bevor sie den Test für diagnostische Zwecke einsetzen.
- Suboptimale Bedingungen können zu einer unspezifischen Bindung führen, die fälschlicherweise als Sondensignal interpretiert werden kann.

Auswertung der Ergebnisse

Beurteilung der Objektträgerqualität

Der Objektträger sollte nicht analysiert werden, falls Folgendes zutrifft:

- Die Signale sind zu schwach für eine Analyse in Einzelfiltern um die Analyse fortzusetzen, sollten Signale hell, deutlich und leicht auswertbar sein.
- Es gibt eine große Anzahl von verklumpten/überlappenden Zellen, welche die Analyse stören.
- > 50 % der Zellen sind nicht hybridisiert.
- Es gibt einen Überschuss an fluoreszierenden Partikeln zwischen den Zellen und/oder einen fluoreszierenden Schleier, der die Signale stört - bei einem optimalen Objektträger sollte der Hintergrund dunkel oder schwarz und sauber
- Die Zellkerngrenzen sind nicht eindeutig erkennbar und nicht intakt.

Analyseleitlinien

- Jede Probe sollte von zwei Analytikern analysiert und ausgewertet werden. Etwaige Unstimmigkeiten sind durch die Auswertung durch einen dritten Analytiker zu klären
- Jeder Analytiker muss über eine angemessene Qualifikation verfügen, die den anerkannten nationalen Standards entspricht.
- Jeder Analytiker sollte unabhängig voneinander 100 Kerne für jede Probe bewerten. Der erste Analytiker sollte mit seiner Analyse auf der linken Seite des Objektträgers beginnen, der zweite Analytiker auf der rechten Seite.
- sollte seine Ergebnisse in Analytiker separaten dokumentieren.
- Analysieren Sie nur intakte Kerne, keine überlappenden oder überfüllten Kerne und keine Kerne, die mit zytoplasmatischen Ablagerungen bedeckt sind oder einen hohen Autofluoreszenzgrad aufweisen.
- Meiden Sie Bereiche, in denen übermäßige zytoplasmatische Ablagerungen oder unspezifische Hybridisierung vorhanden sind.
- Die Signalintensität kann variieren, das gilt auch für einzelne Kerne. Verwenden Sie in solchen Fällen Einzelfilter und/oder passen Sie die Bildebene entsprechend an.
- Unter suboptimalen Bedingungen können Signale diffus erscheinen. Wenn sich zwei Signale der gleichen Farbe berühren oder der Abstand zwischen ihnen nicht größer als zwei Signalbreiten ist, oder wenn ein schwacher Strang vorhanden ist, der die beiden Signale verbindet, zählen diese beiden Signale jeweils als ein Signal.
- Wenn bei der Analyse von zweifarbigen Break-apart-Sonden ein Abstand zwischen dem roten und grünen Signal nicht größer als 2 Signalbreiten ist, so wird dies als nicht neu angeordnetes/fusioniertes Signal gedeutet.
- Wenn bei der Analyse von dreifarbigen Break-apart-Sonden ein Abstand zwischen den 3 Signalen auftritt (rot, grün, blau), der nicht größer ist als 2

- Signalbreiten, so wird dies als nicht neu angeordnetes/fusioniertes Signal gedeutet.
- Falls Sie Zweifel haben, ob eine Zelle für die Analyse in Frage kommt oder nicht, analysieren Sie diese Zelle nicht.

Erwartete Ergebnisse Erwartetes normales Signalmuster

In einer normalen Zelle werden zwei rote und zwei grüne Signale (2R2G)

Erwartete abnormale Signalmuster

In einer Zelle mit 1p32.3-Deletion entspricht das erwartete Signalmuster zwei roten und einem grünen Signal (2R1G).

In einer Zelle mit Zugewinn des 1q21-Locus werden zwei grüne und drei oder mehr rote Signale erwartet (3+R2G).

In einer Zelle mit Amplifikation des 1q21-Locus wird eine große Anzahl kleiner roter Signale beobachtet, die sich über das Zytoplasma verteilen, zusammen mit zwei grünen Kontrollsignalen (ampR2G).

In einer Zelle mit Amplifikation des 1q21-Locus, die zu einer homogen einfärbenden Region führt, wird eine große Anzahl roter Signale beobachtet, die sich über den gesamten Chromosomenabschnitt verteilen, zusammen mit zwei grünen Kontrollsignalen (ampR2G).

Andere Signalmuster sind bei aneuploiden/unbalancierten Proben möglich.

Bekannte relevante Interferenzen / Störsubstanzen

Keine bekannten relevanten Interferenzen / Störsubstanzen.

Bekannte Kreuzreaktionen

Keine bekannten Kreuzreaktionen.

Meldung schwerer Störungen

Bei einem Patienten, einem Benutzer oder einer Drittpartei in der Europäischen Union und in Ländern mit identischen regulatorischen Bestimmungen (EU-Verordnung 2017/746 zu Medizinprodukten für die In-vitro-Diagnostik) gilt: Falls es während der Verwendungen dieses Produkts oder aufgrund der Verwendung dieses Produkts zu einer schweren Störung kommt, dann melden Sie diese bitte dem Hersteller und der in Ihrem Land zuständigen Behörde.

Bei schweren Störungen in anderen Ländern gilt: Melden Sie die Störung bitte dem Hersteller und, sofern zutreffend, der in dem Land zuständigen Behörde.

Ansprechpartner des Herstellers für Vigilanz: vigilance@ogt. Eine Liste der für Vigilanz zuständigen Ansprechpartner für die Behörden der EU-

Mitgliedsländer finden Sie unter: https://health.ec.europa.eu/medical-devices-sector/new-regulations/contacts_en

Spezifische Leistungsmerkmale

Analytische Spezifität

Analytische Spezifität bezeichnet den Prozentsatz der Signale, die im richtigen Locus und an keinem anderen Ort hybridisiert wurden. Es wurden vier chromosomale Loci in jeder der 20 Metaphasezellen aus fünf Proben analysiert, das ergibt 400 Datenpunkte. Die Position jeder hybridisierten Sonde wurde abgebildet und die Anzahl der FISH-Signale der Metaphase-Chromosomen, die am richtigen Ort hybridisiert wurden, wurde aufgezeichnet.

Die analytische Spezifität jeder Sonde im Kit wurde berechnet, indem die Anzahl der FISH-Signale der Metaphase-Chromosomen, die am richtigen Locus hybridisiert wurden, durch die Gesamtzahl der hybridisierten FISH-Signale der Metaphase-Chromosomen dividiert wurde. Dieses Ergebnis wurde mit 100 multipliziert, als Prozentsatz ausgedrückt und mit einem Konfidenzintervall von 95 % angegeben.

Spezifizität der CKS1B/CDKN2C (P18) Analytische Tabelle Amplification/Deletion Probe

Ziel	Anzahl der hybridisierten Metaphase- Chromosomen	Anzahl der korrekt hybridisier -ten Loci	Analyti- sche Spezifität	95 % Konfidenzintervall
1q21	200	200	100 %	98,12 % – 100 %
1p32.3	200	200	100 %	98,12 % – 100 %

Analytische Sensitivität

Die analytische Sensitivität ist der Prozentsatz der auswertbaren Zellen in der Interphase, die das erwartete normale Signalmuster aufweisen. Für 25 fixierte Zellsuspensionen aus Knochenmark und 25 fixierte Zellsuspensionen aus CD138+ Plasmazellen, die keinen CKS1B-Zugewinn/Amplifikation oder eine CDKN2C-Deletion aufweisen, wurden jeweils mindestens 100 Zellen in der Interphase analysiert, so dass für jeden Probentyp mindestens 2500 Kerne ausgewertet wurden. Die Sensitivitätsdaten wurden basierend auf dem Prozentsatz der Zellen analysiert, die ein normales erwartetes Signalmuster aufweisen, und als Prozentsatz mit einem Konfidenzintervall von 95 % ausgedrückt.

Tabelle 2 Analytische Sensitivität der CKS1B/CDKN2C Amplification/Deletion Probe

Probentyp	Sensitivitätskriterien	Sensitivitätsergebnis
Knochenmark	> 95 %	98,68 % (97,87 %– 99,49 %)
CD138+	> 95 %	95,95 % (94,96 % – 99,94 %)

Charakterisierung der normalen Cut-off-Werte

Der normale Cut-off-Wert wird definiert als der Prozentsatz der Zellen, die ein falsch positives Signalmuster aufweisen, bei dem eine Person als gesund angesehen wird und das nicht mit einer klinischen Diagnose übereinstimmt. Für 25 fixierte Zellsuspensionen aus Knochenmark und 25 fixierte Zellsuspensionen aus

CD138+ Plasmazellen, die keinen CKS1B-Zugewinn/Amplifikation oder eine CDKN2C-Deletion aufweisen, wurden jeweils mindestens 100 Zellen in der Interphase analysiert, so dass für jeden Probentyp mindestens 2500 Kerne ausgewertet wurden.

Der Cut-off-Wert wurde mit der Funktion β -inverse (BETAINV) in MS Excel ermittelt. Er wurde berechnet als Prozentsatz der Zellen in der Interphase, die ein falsch positives Signalmuster unter Verwendung der oberen Grenze eines einseitigen Konfidenzintervalls von 95 % der Binomialverteilung in einer normalen Patientenprobe aufweisen.

<u>Tabelle 3 Charakterisierung der normalen Cut-off-Werte der CKS1B/CDKN2C (P18) Amplification/Deletion Probe</u>

Probentyp	Cut-off-Ergebnis 3R2G	Cut-off-Ergebnis 2R1G
Knochenmark	5,93 %	5,71 %
CD138+	9,24 %	10,21 %

Labore müssen die Cut-off-Werte anhand eigener Daten überprüfen^{9,10}.

Präzision

Die Genauigkeit dieses Produkts wurde in Bezug auf die Genauigkeit innerhalb eines Tages (Probe zu Probe), an verschiedenen Tagen (Tag zu Tag) und innerhalb einer Charge an einem einzigen Standort (Charge zu Charge) gemessen.

Drei (3) Proben wurden verwendet, um die Präzision dieses Produkts zu bewerten: 1 normale CD138+ Probe, 1 CD138+ schwach positiv für 2R1G (-CDKN2C) und 1 CD138+ schwach positiv für 3R2G (+CKS1B). Die schwach positiven CD138+ Proben wurden hergestellt, indem ein Teil der negativen CD138+ Proben verwendet und mit einer bekannt positiven CD138+ Probe versetzt wurde, mit dem Ziel, schwach positive Proben im Bereich des 2 – 4-fachen Cut-offs zu erzeugen, um den etablierten Cut-off in Frage zu stellen.

Um die Genauigkeit innerhalb eines Tages und an verschiedenen Tagen zu ermitteln, wurden die Proben an 10 nicht aufeinander folgenden Tagen ausgewertet, und um die Genauigkeit von Charge zu Charge zu bestimmen, wurden 3 Produktchargen an 3 Duplikaten derselben Proben bewertet. Die Ergebnisse wurden als allgemeine Übereinstimmung mit der prognostizierten negativen Klasse (für die negativen Proben) präsentiert.

Tabelle 4 Reproduzierbarkeit und Genauigkeit der CKS1B/CDKN2C (P18) Amplification/Deletion Probe

Variable	Probentyp	Übereinstimmung
	Normal CD138+ (negativ)	100 %
Genauigkeit innerhalb eines Tages und an verschiedenen Tagen	CD138+ schwach positiv 2R1G (-CDKN2C)	100 %
	CD138+ schwach positiv 3R2G (+CKS1B)	100 %
	Normal CD138+ (negativ)	100 %
Genauigkeit von Charge zu Charge	CD138+ schwach positiv 2R1G (-CDKN2C)	100 %
	CD138+ schwach positiv 3R2G (+CKS1B)	100 %

Klinische Leistung

Um sicherzustellen, dass das Produkt die vorgesehenen Neuanordnungen om sicher von der die klinische Leistung in eine Studie an repräsentativen Proben der für das Produkt vorgesehenen Zielpopulation ermittelt: Reste von mit Methanol/Essigsäure fixiertem Material aus hämatologisch gewonnenen Proben. Der Stichprobenumfang für die Studie betrug 23 Proben, wobei die Zielpopulation 10 positive Proben für entweder CKS1B-Amplifikation oder CDKN2C-Deletion oder beides und 13 negative Proben für sowohl CKS1B-Amplifikation als auch CDKN2C-Deletion umfasste. Alle Proben wurden entidentifiziert und randomisiert. um eine Verzerrung der Analyse zu vermeiden. Die Ergebnisse wurden mit dem bekannten Status der Probe verglichen. Die Sonde identifizierte den Status der Proben in allen Fällen korrekt.

Die Ergebnisse dieser Tests wurden analysiert, um mit einem eindimensionalen Ansatz klinische Sensitivität, klinische Spezifität und die Werte der Falsch-Positiv-Rate (FPR) für positive Signale zu bestimmen.

Tabelle 5 Klinische Leistung der CKS1B/CDKN2C (P18) Amplification/Deletion Probe, Amplification CKS1B Results

Variable	Ergebnis
Klinische Sensitivität (Richtig-Positiv-Rate, TPR)	98,71 %
Klinische Spezifität (Richtig-Negativ-Rate, TNR)	99,75 %
Falsch-Positiv-Rate (FPR) = 1 – Spezifität	0,25 %

Tabelle 6 Klinische Leistung der CKS1B/CDKN2C (P18) Amplification/Deletion Probe, Amplification CDKN2C Results

Variable	Ergebnis
Klinische Sensitivität (Richtig-Positiv-Rate, TPR)	100 %
Klinische Spezifität (Richtig-Negativ-Rate, TNR)	100 %
Falsch-Positiv-Rate (FPR) = 1 – Spezifität	0 %

Zusammenfassung von Sicherheit und Leistung (SSP)

Die SSP wird der Öffentlichkeit über die europäische Datenbank für Medizinprodukte (Eudamed) zugänglich gemacht, wo sie mit der Basis-UDI-DI verknüpft ist.

Eudamed URL: https://ec.europa.eu/tools/eudamed

Basis-UDI-DI: 50558449LPH039JS

Wenn Eudamed nicht voll funktionsfähig ist, wird der SSP der Öffentlichkeit auf Anfrage per E-Mail an SSP@ogt.com zur Verfügung gestellt.

Zusätzliche Informationen

Für weitere Produktinformationen wenden Sie sich bitte an den technischen Support von CytoCell.

Tel.: +44 (0)1223 294048 E-Mail: techsupport@cytocell.com Website: www.ogt.com

Referenzen

- Hanamura I. Blood 2006:108(5):1724-32
- Fonseca et al., Leukemia 2009;23(12):2210-2221
- Sawyer, Cancer Genetics 2011;204(1):3-12
- Fonseca et al., Leukemia 2006;20(11):2034-40
- Leone et al., Clin Cancer Res 2008;14(19):6033-41
- 6. Kulkarni et al., Leukemia 2002;16:127-34
- Swerdlow et al., (eds,) WHO Classification of Tumours of Haematopoietic and Lymphoid Tissue, Lyon, France, 4th edition, IARC, 2017
 Arsham, MS., Barch, MJ. and Lawce HJ. (eds.) (2017) The AGT
- 8.
- Arsham, MS., Barch, MJ. and Lawce HJ. (eds.) (2017) *The AGT Cytogenetics Laboratory Manual*. New Jersey: John Wiley & Sons Inc. Mascarello JT, Hirsch B, Kearney HM, et al. Section E9 of the American College of Medical Genetics technical standards and guidelines: fluorescence in situ hybridization. Genet Med. 2011;13(7):667-675. Wiktor AE, Dyke DLV, Stupca PJ, Ketterling RP, Thorland EC, Shearer BM, Fink SR, Stockero KJ, Majorowicz JR, Dewald GW. *Preclinical validation of Control of the Material Preclinical Validation of Control of Control* 9.
- 10. fluorescence in situ hybridization assays for clinical practice. Genetics in Medicine. 2006;8(1):16-23.

Symbolerklärung EN ISO 15223-1:2021 - "Medizinprodukte - Symbole, die in

Verbindung mit vom Hersteller bereitzustellenden Informationen zu verwenden sind - Teil 1: Allgemeine Anforderungen" (© Internationale Organisation für Normung)		
Symbol	Titel	Referenznummer(n)
***	de: Hersteller	5.1.1
EC REP	de: Bevollmächtigter in der Europäischen Gemeinschaft/Europäischen Union	5.1.2
	de: Verfallsdatum	5.1.4
LOT	de: Chargencode	5.1.5
REF	de: Katalognummer	5.1.6
茶	de: Vor Sonnenlicht schützen	5.3.2
1	de: Temperaturgrenze	5.3.7
[]i	de: Gebrauchsanweisung beachten	5.4.3
ogt.com/IFU	de: Elektronische Gebrauchsanweisung beachten	5.4.3
\triangle	de: Vorsicht	5.4.4
IVD	de: Medizinprodukt für die In-vitro-Diagnostik	5.5.1
Σ	de: Menge reicht für <n> Tests</n>	5.5.5

UDI	de: Eindeutige Gerätekennung	5.7.10	
EDMA-Symbole für IVD-Reagenzien und Komponenten, Revision Oktober 2009			
Cumbal	T '1		
Symbol	Titel	Referenznummer(n)	

Patente und Warenzeichen

Cytocell ist eine eingetragene Marke von Cytocell Limited.

Cytocell Limited

Oxford Gene Technology 418 Cambridge Science Park Milton Road CAMBRIDGE CB4 0PZ Großbritannien

Tel.: +44 (0)1223 294048 Fax: +44 (0)1223 294986 E-Mail: probes@cytocell.com

Web: www.ogt.com

Sysmex Europe SE

Bornbarch 1 22848 Norderstedt **DEUTSCHLAND**

Tel.: +49 40 527260

Web: www.svsmex-europe.com

Versionshistorie der Gebrauchsanweisung

V001.00 2023-01-11: Neue Gebrauchsanweisung für EU-Verordnung 2017/746.